C# Language
Kryptographie (System.Security.Cryptography)
Suche…
Moderne Beispiele für die symmetrische authentifizierte Verschlüsselung einer Zeichenfolge
Kryptographie ist etwas sehr Schwieriges, und nachdem ich viel Zeit mit dem Lesen verschiedener Beispiele verbracht und gesehen hatte, wie einfach es ist, eine Form von Schwachstellen einzuführen, fand ich eine Antwort, die ursprünglich von @jbtule geschrieben wurde und die meiner Meinung nach sehr gut ist. Viel Spaß beim Lesen:
Die generelle bewährte Methode für die symmetrische Verschlüsselung ist die Verwendung von Authenticated Encryption mit assoziierten Daten (AEAD). Dies ist jedoch nicht Teil der Standard-.net- Kryptobibliotheken . Das erste Beispiel verwendet also AES256 und dann HMAC256 , dann zwei Schritte für Encrypt MAC , was mehr Aufwand und mehr Schlüssel erfordert.
Das zweite Beispiel verwendet die einfachere Praxis von AES256- GCM unter Verwendung des Open Source Bouncy Castle (via Nuget).
Beide Beispiele haben eine Hauptfunktion, die eine geheime Meldungszeichenfolge, Schlüssel und eine optionale nicht-geheime Nutzlast sowie eine zurückgegebene und authentifizierte verschlüsselte Zeichenfolge verwendet, die optional mit den nicht-geheimen Daten versehen ist. Idealerweise würden Sie diese mit zufällig generierten NewKey()
Bit-Schlüsseln verwenden, siehe NewKey()
.
Beide Beispiele verfügen auch über Hilfsmethoden, die zum Generieren der Schlüssel ein String-Kennwort verwenden. Diese Hilfsmethoden werden als Annehmlichkeit für andere Beispiele bereitgestellt. Sie sind jedoch weitaus weniger sicher, da die Stärke des Kennworts weitaus schwächer sein wird als bei einem 256-Bit-Schlüssel .
Update: byte[]
-Überladungen wurden hinzugefügt, und nur die Gist hat die vollständige Formatierung mit 4 Leerzeichen-Einzug und Api-Docs aufgrund der StackOverflow-Antwortgrenzen. "
Eingebaute .NET-Verschlüsselung (AES) - Dann-MAC (HMAC) [Gist]
/*
* This work (Modern Encryption of a String C#, by James Tuley),
* identified by James Tuley, is free of known copyright restrictions.
* https://gist.github.com/4336842
* http://creativecommons.org/publicdomain/mark/1.0/
*/
using System;
using System.IO;
using System.Security.Cryptography;
using System.Text;
namespace Encryption
{
public static class AESThenHMAC
{
private static readonly RandomNumberGenerator Random = RandomNumberGenerator.Create();
//Preconfigured Encryption Parameters
public static readonly int BlockBitSize = 128;
public static readonly int KeyBitSize = 256;
//Preconfigured Password Key Derivation Parameters
public static readonly int SaltBitSize = 64;
public static readonly int Iterations = 10000;
public static readonly int MinPasswordLength = 12;
/// <summary>
/// Helper that generates a random key on each call.
/// </summary>
/// <returns></returns>
public static byte[] NewKey()
{
var key = new byte[KeyBitSize / 8];
Random.GetBytes(key);
return key;
}
/// <summary>
/// Simple Encryption (AES) then Authentication (HMAC) for a UTF8 Message.
/// </summary>
/// <param name="secretMessage">The secret message.</param>
/// <param name="cryptKey">The crypt key.</param>
/// <param name="authKey">The auth key.</param>
/// <param name="nonSecretPayload">(Optional) Non-Secret Payload.</param>
/// <returns>
/// Encrypted Message
/// </returns>
/// <exception cref="System.ArgumentException">Secret Message Required!;secretMessage</exception>
/// <remarks>
/// Adds overhead of (Optional-Payload + BlockSize(16) + Message-Padded-To-Blocksize + HMac-Tag(32)) * 1.33 Base64
/// </remarks>
public static string SimpleEncrypt(string secretMessage, byte[] cryptKey, byte[] authKey,
byte[] nonSecretPayload = null)
{
if (string.IsNullOrEmpty(secretMessage))
throw new ArgumentException("Secret Message Required!", "secretMessage");
var plainText = Encoding.UTF8.GetBytes(secretMessage);
var cipherText = SimpleEncrypt(plainText, cryptKey, authKey, nonSecretPayload);
return Convert.ToBase64String(cipherText);
}
/// <summary>
/// Simple Authentication (HMAC) then Decryption (AES) for a secrets UTF8 Message.
/// </summary>
/// <param name="encryptedMessage">The encrypted message.</param>
/// <param name="cryptKey">The crypt key.</param>
/// <param name="authKey">The auth key.</param>
/// <param name="nonSecretPayloadLength">Length of the non secret payload.</param>
/// <returns>
/// Decrypted Message
/// </returns>
/// <exception cref="System.ArgumentException">Encrypted Message Required!;encryptedMessage</exception>
public static string SimpleDecrypt(string encryptedMessage, byte[] cryptKey, byte[] authKey,
int nonSecretPayloadLength = 0)
{
if (string.IsNullOrWhiteSpace(encryptedMessage))
throw new ArgumentException("Encrypted Message Required!", "encryptedMessage");
var cipherText = Convert.FromBase64String(encryptedMessage);
var plainText = SimpleDecrypt(cipherText, cryptKey, authKey, nonSecretPayloadLength);
return plainText == null ? null : Encoding.UTF8.GetString(plainText);
}
/// <summary>
/// Simple Encryption (AES) then Authentication (HMAC) of a UTF8 message
/// using Keys derived from a Password (PBKDF2).
/// </summary>
/// <param name="secretMessage">The secret message.</param>
/// <param name="password">The password.</param>
/// <param name="nonSecretPayload">The non secret payload.</param>
/// <returns>
/// Encrypted Message
/// </returns>
/// <exception cref="System.ArgumentException">password</exception>
/// <remarks>
/// Significantly less secure than using random binary keys.
/// Adds additional non secret payload for key generation parameters.
/// </remarks>
public static string SimpleEncryptWithPassword(string secretMessage, string password,
byte[] nonSecretPayload = null)
{
if (string.IsNullOrEmpty(secretMessage))
throw new ArgumentException("Secret Message Required!", "secretMessage");
var plainText = Encoding.UTF8.GetBytes(secretMessage);
var cipherText = SimpleEncryptWithPassword(plainText, password, nonSecretPayload);
return Convert.ToBase64String(cipherText);
}
/// <summary>
/// Simple Authentication (HMAC) and then Descryption (AES) of a UTF8 Message
/// using keys derived from a password (PBKDF2).
/// </summary>
/// <param name="encryptedMessage">The encrypted message.</param>
/// <param name="password">The password.</param>
/// <param name="nonSecretPayloadLength">Length of the non secret payload.</param>
/// <returns>
/// Decrypted Message
/// </returns>
/// <exception cref="System.ArgumentException">Encrypted Message Required!;encryptedMessage</exception>
/// <remarks>
/// Significantly less secure than using random binary keys.
/// </remarks>
public static string SimpleDecryptWithPassword(string encryptedMessage, string password,
int nonSecretPayloadLength = 0)
{
if (string.IsNullOrWhiteSpace(encryptedMessage))
throw new ArgumentException("Encrypted Message Required!", "encryptedMessage");
var cipherText = Convert.FromBase64String(encryptedMessage);
var plainText = SimpleDecryptWithPassword(cipherText, password, nonSecretPayloadLength);
return plainText == null ? null : Encoding.UTF8.GetString(plainText);
}
public static byte[] SimpleEncrypt(byte[] secretMessage, byte[] cryptKey, byte[] authKey, byte[] nonSecretPayload = null)
{
//User Error Checks
if (cryptKey == null || cryptKey.Length != KeyBitSize / 8)
throw new ArgumentException(String.Format("Key needs to be {0} bit!", KeyBitSize), "cryptKey");
if (authKey == null || authKey.Length != KeyBitSize / 8)
throw new ArgumentException(String.Format("Key needs to be {0} bit!", KeyBitSize), "authKey");
if (secretMessage == null || secretMessage.Length < 1)
throw new ArgumentException("Secret Message Required!", "secretMessage");
//non-secret payload optional
nonSecretPayload = nonSecretPayload ?? new byte[] { };
byte[] cipherText;
byte[] iv;
using (var aes = new AesManaged
{
KeySize = KeyBitSize,
BlockSize = BlockBitSize,
Mode = CipherMode.CBC,
Padding = PaddingMode.PKCS7
})
{
//Use random IV
aes.GenerateIV();
iv = aes.IV;
using (var encrypter = aes.CreateEncryptor(cryptKey, iv))
using (var cipherStream = new MemoryStream())
{
using (var cryptoStream = new CryptoStream(cipherStream, encrypter, CryptoStreamMode.Write))
using (var binaryWriter = new BinaryWriter(cryptoStream))
{
//Encrypt Data
binaryWriter.Write(secretMessage);
}
cipherText = cipherStream.ToArray();
}
}
//Assemble encrypted message and add authentication
using (var hmac = new HMACSHA256(authKey))
using (var encryptedStream = new MemoryStream())
{
using (var binaryWriter = new BinaryWriter(encryptedStream))
{
//Prepend non-secret payload if any
binaryWriter.Write(nonSecretPayload);
//Prepend IV
binaryWriter.Write(iv);
//Write Ciphertext
binaryWriter.Write(cipherText);
binaryWriter.Flush();
//Authenticate all data
var tag = hmac.ComputeHash(encryptedStream.ToArray());
//Postpend tag
binaryWriter.Write(tag);
}
return encryptedStream.ToArray();
}
}
public static byte[] SimpleDecrypt(byte[] encryptedMessage, byte[] cryptKey, byte[] authKey, int nonSecretPayloadLength = 0)
{
//Basic Usage Error Checks
if (cryptKey == null || cryptKey.Length != KeyBitSize / 8)
throw new ArgumentException(String.Format("CryptKey needs to be {0} bit!", KeyBitSize), "cryptKey");
if (authKey == null || authKey.Length != KeyBitSize / 8)
throw new ArgumentException(String.Format("AuthKey needs to be {0} bit!", KeyBitSize), "authKey");
if (encryptedMessage == null || encryptedMessage.Length == 0)
throw new ArgumentException("Encrypted Message Required!", "encryptedMessage");
using (var hmac = new HMACSHA256(authKey))
{
var sentTag = new byte[hmac.HashSize / 8];
//Calculate Tag
var calcTag = hmac.ComputeHash(encryptedMessage, 0, encryptedMessage.Length - sentTag.Length);
var ivLength = (BlockBitSize / 8);
//if message length is to small just return null
if (encryptedMessage.Length < sentTag.Length + nonSecretPayloadLength + ivLength)
return null;
//Grab Sent Tag
Array.Copy(encryptedMessage, encryptedMessage.Length - sentTag.Length, sentTag, 0, sentTag.Length);
//Compare Tag with constant time comparison
var compare = 0;
for (var i = 0; i < sentTag.Length; i++)
compare |= sentTag[i] ^ calcTag[i];
//if message doesn't authenticate return null
if (compare != 0)
return null;
using (var aes = new AesManaged
{
KeySize = KeyBitSize,
BlockSize = BlockBitSize,
Mode = CipherMode.CBC,
Padding = PaddingMode.PKCS7
})
{
//Grab IV from message
var iv = new byte[ivLength];
Array.Copy(encryptedMessage, nonSecretPayloadLength, iv, 0, iv.Length);
using (var decrypter = aes.CreateDecryptor(cryptKey, iv))
using (var plainTextStream = new MemoryStream())
{
using (var decrypterStream = new CryptoStream(plainTextStream, decrypter, CryptoStreamMode.Write))
using (var binaryWriter = new BinaryWriter(decrypterStream))
{
//Decrypt Cipher Text from Message
binaryWriter.Write(
encryptedMessage,
nonSecretPayloadLength + iv.Length,
encryptedMessage.Length - nonSecretPayloadLength - iv.Length - sentTag.Length
);
}
//Return Plain Text
return plainTextStream.ToArray();
}
}
}
}
public static byte[] SimpleEncryptWithPassword(byte[] secretMessage, string password, byte[] nonSecretPayload = null)
{
nonSecretPayload = nonSecretPayload ?? new byte[] {};
//User Error Checks
if (string.IsNullOrWhiteSpace(password) || password.Length < MinPasswordLength)
throw new ArgumentException(String.Format("Must have a password of at least {0} characters!", MinPasswordLength), "password");
if (secretMessage == null || secretMessage.Length ==0)
throw new ArgumentException("Secret Message Required!", "secretMessage");
var payload = new byte[((SaltBitSize / 8) * 2) + nonSecretPayload.Length];
Array.Copy(nonSecretPayload, payload, nonSecretPayload.Length);
int payloadIndex = nonSecretPayload.Length;
byte[] cryptKey;
byte[] authKey;
//Use Random Salt to prevent pre-generated weak password attacks.
using (var generator = new Rfc2898DeriveBytes(password, SaltBitSize / 8, Iterations))
{
var salt = generator.Salt;
//Generate Keys
cryptKey = generator.GetBytes(KeyBitSize / 8);
//Create Non Secret Payload
Array.Copy(salt, 0, payload, payloadIndex, salt.Length);
payloadIndex += salt.Length;
}
//Deriving separate key, might be less efficient than using HKDF,
//but now compatible with RNEncryptor which had a very similar wireformat and requires less code than HKDF.
using (var generator = new Rfc2898DeriveBytes(password, SaltBitSize / 8, Iterations))
{
var salt = generator.Salt;
//Generate Keys
authKey = generator.GetBytes(KeyBitSize / 8);
//Create Rest of Non Secret Payload
Array.Copy(salt, 0, payload, payloadIndex, salt.Length);
}
return SimpleEncrypt(secretMessage, cryptKey, authKey, payload);
}
public static byte[] SimpleDecryptWithPassword(byte[] encryptedMessage, string password, int nonSecretPayloadLength = 0)
{
//User Error Checks
if (string.IsNullOrWhiteSpace(password) || password.Length < MinPasswordLength)
throw new ArgumentException(String.Format("Must have a password of at least {0} characters!", MinPasswordLength), "password");
if (encryptedMessage == null || encryptedMessage.Length == 0)
throw new ArgumentException("Encrypted Message Required!", "encryptedMessage");
var cryptSalt = new byte[SaltBitSize / 8];
var authSalt = new byte[SaltBitSize / 8];
//Grab Salt from Non-Secret Payload
Array.Copy(encryptedMessage, nonSecretPayloadLength, cryptSalt, 0, cryptSalt.Length);
Array.Copy(encryptedMessage, nonSecretPayloadLength + cryptSalt.Length, authSalt, 0, authSalt.Length);
byte[] cryptKey;
byte[] authKey;
//Generate crypt key
using (var generator = new Rfc2898DeriveBytes(password, cryptSalt, Iterations))
{
cryptKey = generator.GetBytes(KeyBitSize / 8);
}
//Generate auth key
using (var generator = new Rfc2898DeriveBytes(password, authSalt, Iterations))
{
authKey = generator.GetBytes(KeyBitSize / 8);
}
return SimpleDecrypt(encryptedMessage, cryptKey, authKey, cryptSalt.Length + authSalt.Length + nonSecretPayloadLength);
}
}
}
Bouncy Castle AES-GCM [Gist]
/*
* This work (Modern Encryption of a String C#, by James Tuley),
* identified by James Tuley, is free of known copyright restrictions.
* https://gist.github.com/4336842
* http://creativecommons.org/publicdomain/mark/1.0/
*/
using System;
using System.IO;
using System.Text;
using Org.BouncyCastle.Crypto;
using Org.BouncyCastle.Crypto.Engines;
using Org.BouncyCastle.Crypto.Generators;
using Org.BouncyCastle.Crypto.Modes;
using Org.BouncyCastle.Crypto.Parameters;
using Org.BouncyCastle.Security;
namespace Encryption
{
public static class AESGCM
{
private static readonly SecureRandom Random = new SecureRandom();
//Preconfigured Encryption Parameters
public static readonly int NonceBitSize = 128;
public static readonly int MacBitSize = 128;
public static readonly int KeyBitSize = 256;
//Preconfigured Password Key Derivation Parameters
public static readonly int SaltBitSize = 128;
public static readonly int Iterations = 10000;
public static readonly int MinPasswordLength = 12;
/// <summary>
/// Helper that generates a random new key on each call.
/// </summary>
/// <returns></returns>
public static byte[] NewKey()
{
var key = new byte[KeyBitSize / 8];
Random.NextBytes(key);
return key;
}
/// <summary>
/// Simple Encryption And Authentication (AES-GCM) of a UTF8 string.
/// </summary>
/// <param name="secretMessage">The secret message.</param>
/// <param name="key">The key.</param>
/// <param name="nonSecretPayload">Optional non-secret payload.</param>
/// <returns>
/// Encrypted Message
/// </returns>
/// <exception cref="System.ArgumentException">Secret Message Required!;secretMessage</exception>
/// <remarks>
/// Adds overhead of (Optional-Payload + BlockSize(16) + Message + HMac-Tag(16)) * 1.33 Base64
/// </remarks>
public static string SimpleEncrypt(string secretMessage, byte[] key, byte[] nonSecretPayload = null)
{
if (string.IsNullOrEmpty(secretMessage))
throw new ArgumentException("Secret Message Required!", "secretMessage");
var plainText = Encoding.UTF8.GetBytes(secretMessage);
var cipherText = SimpleEncrypt(plainText, key, nonSecretPayload);
return Convert.ToBase64String(cipherText);
}
/// <summary>
/// Simple Decryption & Authentication (AES-GCM) of a UTF8 Message
/// </summary>
/// <param name="encryptedMessage">The encrypted message.</param>
/// <param name="key">The key.</param>
/// <param name="nonSecretPayloadLength">Length of the optional non-secret payload.</param>
/// <returns>Decrypted Message</returns>
public static string SimpleDecrypt(string encryptedMessage, byte[] key, int nonSecretPayloadLength = 0)
{
if (string.IsNullOrEmpty(encryptedMessage))
throw new ArgumentException("Encrypted Message Required!", "encryptedMessage");
var cipherText = Convert.FromBase64String(encryptedMessage);
var plainText = SimpleDecrypt(cipherText, key, nonSecretPayloadLength);
return plainText == null ? null : Encoding.UTF8.GetString(plainText);
}
/// <summary>
/// Simple Encryption And Authentication (AES-GCM) of a UTF8 String
/// using key derived from a password (PBKDF2).
/// </summary>
/// <param name="secretMessage">The secret message.</param>
/// <param name="password">The password.</param>
/// <param name="nonSecretPayload">The non secret payload.</param>
/// <returns>
/// Encrypted Message
/// </returns>
/// <remarks>
/// Significantly less secure than using random binary keys.
/// Adds additional non secret payload for key generation parameters.
/// </remarks>
public static string SimpleEncryptWithPassword(string secretMessage, string password,
byte[] nonSecretPayload = null)
{
if (string.IsNullOrEmpty(secretMessage))
throw new ArgumentException("Secret Message Required!", "secretMessage");
var plainText = Encoding.UTF8.GetBytes(secretMessage);
var cipherText = SimpleEncryptWithPassword(plainText, password, nonSecretPayload);
return Convert.ToBase64String(cipherText);
}
/// <summary>
/// Simple Decryption and Authentication (AES-GCM) of a UTF8 message
/// using a key derived from a password (PBKDF2)
/// </summary>
/// <param name="encryptedMessage">The encrypted message.</param>
/// <param name="password">The password.</param>
/// <param name="nonSecretPayloadLength">Length of the non secret payload.</param>
/// <returns>
/// Decrypted Message
/// </returns>
/// <exception cref="System.ArgumentException">Encrypted Message Required!;encryptedMessage</exception>
/// <remarks>
/// Significantly less secure than using random binary keys.
/// </remarks>
public static string SimpleDecryptWithPassword(string encryptedMessage, string password,
int nonSecretPayloadLength = 0)
{
if (string.IsNullOrWhiteSpace(encryptedMessage))
throw new ArgumentException("Encrypted Message Required!", "encryptedMessage");
var cipherText = Convert.FromBase64String(encryptedMessage);
var plainText = SimpleDecryptWithPassword(cipherText, password, nonSecretPayloadLength);
return plainText == null ? null : Encoding.UTF8.GetString(plainText);
}
public static byte[] SimpleEncrypt(byte[] secretMessage, byte[] key, byte[] nonSecretPayload = null)
{
//User Error Checks
if (key == null || key.Length != KeyBitSize / 8)
throw new ArgumentException(String.Format("Key needs to be {0} bit!", KeyBitSize), "key");
if (secretMessage == null || secretMessage.Length == 0)
throw new ArgumentException("Secret Message Required!", "secretMessage");
//Non-secret Payload Optional
nonSecretPayload = nonSecretPayload ?? new byte[] { };
//Using random nonce large enough not to repeat
var nonce = new byte[NonceBitSize / 8];
Random.NextBytes(nonce, 0, nonce.Length);
var cipher = new GcmBlockCipher(new AesFastEngine());
var parameters = new AeadParameters(new KeyParameter(key), MacBitSize, nonce, nonSecretPayload);
cipher.Init(true, parameters);
//Generate Cipher Text With Auth Tag
var cipherText = new byte[cipher.GetOutputSize(secretMessage.Length)];
var len = cipher.ProcessBytes(secretMessage, 0, secretMessage.Length, cipherText, 0);
cipher.DoFinal(cipherText, len);
//Assemble Message
using (var combinedStream = new MemoryStream())
{
using (var binaryWriter = new BinaryWriter(combinedStream))
{
//Prepend Authenticated Payload
binaryWriter.Write(nonSecretPayload);
//Prepend Nonce
binaryWriter.Write(nonce);
//Write Cipher Text
binaryWriter.Write(cipherText);
}
return combinedStream.ToArray();
}
}
public static byte[] SimpleDecrypt(byte[] encryptedMessage, byte[] key, int nonSecretPayloadLength = 0)
{
//User Error Checks
if (key == null || key.Length != KeyBitSize / 8)
throw new ArgumentException(String.Format("Key needs to be {0} bit!", KeyBitSize), "key");
if (encryptedMessage == null || encryptedMessage.Length == 0)
throw new ArgumentException("Encrypted Message Required!", "encryptedMessage");
using (var cipherStream = new MemoryStream(encryptedMessage))
using (var cipherReader = new BinaryReader(cipherStream))
{
//Grab Payload
var nonSecretPayload = cipherReader.ReadBytes(nonSecretPayloadLength);
//Grab Nonce
var nonce = cipherReader.ReadBytes(NonceBitSize / 8);
var cipher = new GcmBlockCipher(new AesFastEngine());
var parameters = new AeadParameters(new KeyParameter(key), MacBitSize, nonce, nonSecretPayload);
cipher.Init(false, parameters);
//Decrypt Cipher Text
var cipherText = cipherReader.ReadBytes(encryptedMessage.Length - nonSecretPayloadLength - nonce.Length);
var plainText = new byte[cipher.GetOutputSize(cipherText.Length)];
try
{
var len = cipher.ProcessBytes(cipherText, 0, cipherText.Length, plainText, 0);
cipher.DoFinal(plainText, len);
}
catch (InvalidCipherTextException)
{
//Return null if it doesn't authenticate
return null;
}
return plainText;
}
}
public static byte[] SimpleEncryptWithPassword(byte[] secretMessage, string password, byte[] nonSecretPayload = null)
{
nonSecretPayload = nonSecretPayload ?? new byte[] {};
//User Error Checks
if (string.IsNullOrWhiteSpace(password) || password.Length < MinPasswordLength)
throw new ArgumentException(String.Format("Must have a password of at least {0} characters!", MinPasswordLength), "password");
if (secretMessage == null || secretMessage.Length == 0)
throw new ArgumentException("Secret Message Required!", "secretMessage");
var generator = new Pkcs5S2ParametersGenerator();
//Use Random Salt to minimize pre-generated weak password attacks.
var salt = new byte[SaltBitSize / 8];
Random.NextBytes(salt);
generator.Init(
PbeParametersGenerator.Pkcs5PasswordToBytes(password.ToCharArray()),
salt,
Iterations);
//Generate Key
var key = (KeyParameter)generator.GenerateDerivedMacParameters(KeyBitSize);
//Create Full Non Secret Payload
var payload = new byte[salt.Length + nonSecretPayload.Length];
Array.Copy(nonSecretPayload, payload, nonSecretPayload.Length);
Array.Copy(salt,0, payload,nonSecretPayload.Length, salt.Length);
return SimpleEncrypt(secretMessage, key.GetKey(), payload);
}
public static byte[] SimpleDecryptWithPassword(byte[] encryptedMessage, string password, int nonSecretPayloadLength = 0)
{
//User Error Checks
if (string.IsNullOrWhiteSpace(password) || password.Length < MinPasswordLength)
throw new ArgumentException(String.Format("Must have a password of at least {0} characters!", MinPasswordLength), "password");
if (encryptedMessage == null || encryptedMessage.Length == 0)
throw new ArgumentException("Encrypted Message Required!", "encryptedMessage");
var generator = new Pkcs5S2ParametersGenerator();
//Grab Salt from Payload
var salt = new byte[SaltBitSize / 8];
Array.Copy(encryptedMessage, nonSecretPayloadLength, salt, 0, salt.Length);
generator.Init(
PbeParametersGenerator.Pkcs5PasswordToBytes(password.ToCharArray()),
salt,
Iterations);
//Generate Key
var key = (KeyParameter)generator.GenerateDerivedMacParameters(KeyBitSize);
return SimpleDecrypt(encryptedMessage, key.GetKey(), salt.Length + nonSecretPayloadLength);
}
}
}
Einführung in die symmetrische und asymmetrische Verschlüsselung
Sie können die Sicherheit für die Datenübertragung oder -speicherung verbessern, indem Sie Verschlüsselungstechniken implementieren. Grundsätzlich gibt es bei der Verwendung von System.Security.Cryptography zwei Ansätze: symmetrisch und asymmetrisch.
Symmetrische Verschlüsselung
Diese Methode verwendet einen privaten Schlüssel, um die Datenumwandlung durchzuführen.
Pros:
- Symmetrische Algorithmen verbrauchen weniger Ressourcen und sind schneller als asymmetrische.
- Die Datenmenge, die Sie verschlüsseln können, ist unbegrenzt.
Nachteile:
- Verschlüsselung und Entschlüsselung verwenden denselben Schlüssel. Jemand kann Ihre Daten entschlüsseln, wenn der Schlüssel gefährdet ist.
- Wenn Sie einen anderen geheimen Schlüssel für andere Daten verwenden, können Sie viele verschiedene geheime Schlüssel verwalten.
Unter System.Security.Cryptography gibt es verschiedene Klassen, die eine symmetrische Verschlüsselung durchführen. Sie werden als Blockchiffren bezeichnet :
- AesManaged ( AES- Algorithmus).
- AesCryptoServiceProvider ( AES- Algorithmus, FIPS 140-2-Beschwerde ).
- DESCryptoServiceProvider ( DES- Algorithmus).
- RC2CryptoServiceProvider ( Rivest Cipher 2- Algorithmus).
- RijndaelManaged ( AES- Algorithmus). Hinweis : RijndaelManaged ist keine FIPS-197- Beschwerde.
- TripleDES ( TripleDES- Algorithmus).
Asymmetrische Verschlüsselung
Diese Methode verwendet eine Kombination aus öffentlichen und privaten Schlüsseln, um die Datentransformation durchzuführen.
Pros:
- Es verwendet größere Schlüssel als symmetrische Algorithmen, daher sind sie weniger anfällig für Rissbildung durch rohe Gewalt.
- Es ist einfacher zu gewährleisten, wer die Daten ver- und entschlüsseln kann, da zwei Schlüssel (öffentlich und privat) verwendet werden.
Nachteile:
- Die Datenmenge, die Sie verschlüsseln können, ist begrenzt. Die Grenze ist für jeden Algorithmus unterschiedlich und ist normalerweise proportional zur Schlüsselgröße des Algorithmus. Ein RSACryptoServiceProvider-Objekt mit einer Schlüssellänge von 1.024 Bits kann beispielsweise nur eine Nachricht verschlüsseln, die kleiner als 128 Byte ist.
- Asymmetrische Algorithmen sind im Vergleich zu symmetrischen Algorithmen sehr langsam.
Unter System.Security.Cryptography haben Sie Zugriff auf verschiedene Klassen, die eine asymmetrische Verschlüsselung durchführen:
- DSACryptoServiceProvider ( Algorithmus für digitale Signaturalgorithmen )
- RSACryptoServiceProvider ( RSA-Algorithmus- Algorithmus)
Passwort-Hashing
Passwörter sollten niemals als Klartext gespeichert werden! Sie sollten mit einem zufällig generierten Salt (zur Abwehr von Regenbogentischangriffen) mit einem langsamen Passwort-Hash-Algorithmus gehasht werden. Eine große Anzahl von Iterationen (> 10.000) kann verwendet werden, um Brute-Force-Angriffe zu verlangsamen. Eine Verzögerung von ~ 100ms ist für einen Benutzer akzeptabel, macht es jedoch schwierig, ein langes Passwort zu brechen. Bei der Auswahl einer Reihe von Iterationen sollten Sie den maximal zulässigen Wert für Ihre Anwendung verwenden und diesen Wert erhöhen, wenn sich die Computerleistung verbessert. Sie müssen auch in Erwägung ziehen, wiederholte Anfragen zu stoppen, die als DoS-Angriff verwendet werden könnten.
Wenn beim ersten Hashing ein Salt für Sie generiert werden kann, können der resultierende Hash und Salt in einer Datei gespeichert werden.
private void firstHash(string userName, string userPassword, int numberOfItterations)
{
Rfc2898DeriveBytes PBKDF2 = new Rfc2898DeriveBytes(userPassword, 8, numberOfItterations); //Hash the password with a 8 byte salt
byte[] hashedPassword = PBKDF2.GetBytes(20); //Returns a 20 byte hash
byte[] salt = PBKDF2.Salt;
writeHashToFile(userName, hashedPassword, salt, numberOfItterations); //Store the hashed password with the salt and number of itterations to check against future password entries
}
Überprüfen Sie ein bestehendes Benutzerpasswort, lesen Sie dessen Hash und Salt aus einer Datei und vergleichen Sie es mit dem Hash des eingegebenen Passworts
private bool checkPassword(string userName, string userPassword, int numberOfItterations)
{
byte[] usersHash = getUserHashFromFile(userName);
byte[] userSalt = getUserSaltFromFile(userName);
Rfc2898DeriveBytes PBKDF2 = new Rfc2898DeriveBytes(userPassword, userSalt, numberOfItterations); //Hash the password with the users salt
byte[] hashedPassword = PBKDF2.GetBytes(20); //Returns a 20 byte hash
bool passwordsMach = comparePasswords(usersHash, hashedPassword); //Compares byte arrays
return passwordsMach;
}
Einfache symmetrische Dateiverschlüsselung
Das folgende Codebeispiel veranschaulicht ein schnelles und einfaches Mittel zum Ver- und Entschlüsseln von Dateien mithilfe des symmetrischen AES-Verschlüsselungsalgorithmus.
Der Code generiert bei jeder Verschlüsselung einer Datei zufällig die Salt- und Initialisierungsvektoren. Dies bedeutet, dass die Verschlüsselung derselben Datei mit demselben Kennwort immer zu einer anderen Ausgabe führt. Der Salt und IV werden in die Ausgabedatei geschrieben, so dass nur das Kennwort zum Entschlüsseln erforderlich ist.
public static void ProcessFile(string inputPath, string password, bool encryptMode, string outputPath)
{
using (var cypher = new AesManaged())
using (var fsIn = new FileStream(inputPath, FileMode.Open))
using (var fsOut = new FileStream(outputPath, FileMode.Create))
{
const int saltLength = 256;
var salt = new byte[saltLength];
var iv = new byte[cypher.BlockSize / 8];
if (encryptMode)
{
// Generate random salt and IV, then write them to file
using (var rng = new RNGCryptoServiceProvider())
{
rng.GetBytes(salt);
rng.GetBytes(iv);
}
fsOut.Write(salt, 0, salt.Length);
fsOut.Write(iv, 0, iv.Length);
}
else
{
// Read the salt and IV from the file
fsIn.Read(salt, 0, saltLength);
fsIn.Read(iv, 0, iv.Length);
}
// Generate a secure password, based on the password and salt provided
var pdb = new Rfc2898DeriveBytes(password, salt);
var key = pdb.GetBytes(cypher.KeySize / 8);
// Encrypt or decrypt the file
using (var cryptoTransform = encryptMode
? cypher.CreateEncryptor(key, iv)
: cypher.CreateDecryptor(key, iv))
using (var cs = new CryptoStream(fsOut, cryptoTransform, CryptoStreamMode.Write))
{
fsIn.CopyTo(cs);
}
}
}
Kryptografisch sichere Zufallsdaten
Es kann vorkommen, dass die Random () - Klasse des Frameworks nicht als zufällig angesehen wird, da sie auf einem Pseudo-Zufallszahlengenerator basiert. Die Crypto-Klassen des Frameworks bieten jedoch mit RNGCryptoServiceProvider etwas Robusteres.
In den folgenden Codebeispielen wird veranschaulicht, wie Arrays, Strings und Zahlen für kryptografisch sichere Bytes generiert werden.
Zufälliges Byte-Array
public static byte[] GenerateRandomData(int length)
{
var rnd = new byte[length];
using (var rng = new RNGCryptoServiceProvider())
rng.GetBytes(rnd);
return rnd;
}
Zufällige ganze Zahl (mit gerader Verteilung)
public static int GenerateRandomInt(int minVal=0, int maxVal=100)
{
var rnd = new byte[4];
using (var rng = new RNGCryptoServiceProvider())
rng.GetBytes(rnd);
var i = Math.Abs(BitConverter.ToInt32(rnd, 0));
return Convert.ToInt32(i % (maxVal - minVal + 1) + minVal);
}
Zufällige Zeichenfolge
public static string GenerateRandomString(int length, string allowableChars=null)
{
if (string.IsNullOrEmpty(allowableChars))
allowableChars = @"ABCDEFGHIJKLMNOPQRSTUVWXYZ";
// Generate random data
var rnd = new byte[length];
using (var rng = new RNGCryptoServiceProvider())
rng.GetBytes(rnd);
// Generate the output string
var allowable = allowableChars.ToCharArray();
var l = allowable.Length;
var chars = new char[length];
for (var i = 0; i < length; i++)
chars[i] = allowable[rnd[i] % l];
return new string(chars);
}
Schnelle asymmetrische Dateiverschlüsselung
Für die Übertragung von Nachrichten an andere Parteien wird die asymmetrische Verschlüsselung häufig der Symmetrischen Verschlüsselung vorgezogen. Dies ist vor allem darauf zurückzuführen, dass viele der mit dem Austausch eines gemeinsam genutzten Schlüssels verbundenen Risiken aufgehoben werden und sichergestellt wird, dass jeder Benutzer mit dem öffentlichen Schlüssel eine Nachricht für den beabsichtigten Empfänger verschlüsseln kann, aber nur dieser Empfänger diese entschlüsseln kann. Leider ist der größte Nachteil asymmetrischer Verschlüsselungsalgorithmen, dass sie wesentlich langsamer sind als ihre symmetrischen Verwandten. Daher kann die asymmetrische Verschlüsselung von Dateien, insbesondere großen Dateien, oftmals sehr rechenintensiv sein.
Um sowohl Sicherheit als auch Leistung zu bieten, kann ein hybrider Ansatz gewählt werden. Dies beinhaltet die kryptografisch zufällige Erzeugung eines Schlüssels und eines Initialisierungsvektors für die symmetrische Verschlüsselung. Diese Werte werden dann mit einem asymmetrischen Algorithmus verschlüsselt und in die Ausgabedatei geschrieben, bevor die Quelldaten symmetrisch verschlüsselt und an die Ausgabe angehängt werden.
Dieser Ansatz bietet ein hohes Maß an Leistung und Sicherheit, da die Daten mit einem symmetrischen Algorithmus (schnell) verschlüsselt werden und der Schlüssel und iv, die beide zufällig generiert (sicher), durch einen asymmetrischen Algorithmus (sicher) verschlüsselt werden. Es hat auch den zusätzlichen Vorteil, dass die gleiche Nutzlast, die zu verschiedenen Zeitpunkten verschlüsselt wird, einen sehr unterschiedlichen Cyphertext hat, da die symmetrischen Schlüssel jedes Mal zufällig generiert werden.
Die folgende Klasse demonstriert die asymmetrische Verschlüsselung von Zeichenfolgen und Byte-Arrays sowie die Hybrid-Dateiverschlüsselung.
public static class AsymmetricProvider
{
#region Key Generation
public class KeyPair
{
public string PublicKey { get; set; }
public string PrivateKey { get; set; }
}
public static KeyPair GenerateNewKeyPair(int keySize = 4096)
{
// KeySize is measured in bits. 1024 is the default, 2048 is better, 4096 is more robust but takes a fair bit longer to generate.
using (var rsa = new RSACryptoServiceProvider(keySize))
{
return new KeyPair {PublicKey = rsa.ToXmlString(false), PrivateKey = rsa.ToXmlString(true)};
}
}
#endregion
#region Asymmetric Data Encryption and Decryption
public static byte[] EncryptData(byte[] data, string publicKey)
{
using (var asymmetricProvider = new RSACryptoServiceProvider())
{
asymmetricProvider.FromXmlString(publicKey);
return asymmetricProvider.Encrypt(data, true);
}
}
public static byte[] DecryptData(byte[] data, string publicKey)
{
using (var asymmetricProvider = new RSACryptoServiceProvider())
{
asymmetricProvider.FromXmlString(publicKey);
if (asymmetricProvider.PublicOnly)
throw new Exception("The key provided is a public key and does not contain the private key elements required for decryption");
return asymmetricProvider.Decrypt(data, true);
}
}
public static string EncryptString(string value, string publicKey)
{
return Convert.ToBase64String(EncryptData(Encoding.UTF8.GetBytes(value), publicKey));
}
public static string DecryptString(string value, string privateKey)
{
return Encoding.UTF8.GetString(EncryptData(Convert.FromBase64String(value), privateKey));
}
#endregion
#region Hybrid File Encryption and Decription
public static void EncryptFile(string inputFilePath, string outputFilePath, string publicKey)
{
using (var symmetricCypher = new AesManaged())
{
// Generate random key and IV for symmetric encryption
var key = new byte[symmetricCypher.KeySize / 8];
var iv = new byte[symmetricCypher.BlockSize / 8];
using (var rng = new RNGCryptoServiceProvider())
{
rng.GetBytes(key);
rng.GetBytes(iv);
}
// Encrypt the symmetric key and IV
var buf = new byte[key.Length + iv.Length];
Array.Copy(key, buf, key.Length);
Array.Copy(iv, 0, buf, key.Length, iv.Length);
buf = EncryptData(buf, publicKey);
var bufLen = BitConverter.GetBytes(buf.Length);
// Symmetrically encrypt the data and write it to the file, along with the encrypted key and iv
using (var cypherKey = symmetricCypher.CreateEncryptor(key, iv))
using (var fsIn = new FileStream(inputFilePath, FileMode.Open))
using (var fsOut = new FileStream(outputFilePath, FileMode.Create))
using (var cs = new CryptoStream(fsOut, cypherKey, CryptoStreamMode.Write))
{
fsOut.Write(bufLen,0, bufLen.Length);
fsOut.Write(buf, 0, buf.Length);
fsIn.CopyTo(cs);
}
}
}
public static void DecryptFile(string inputFilePath, string outputFilePath, string privateKey)
{
using (var symmetricCypher = new AesManaged())
using (var fsIn = new FileStream(inputFilePath, FileMode.Open))
{
// Determine the length of the encrypted key and IV
var buf = new byte[sizeof(int)];
fsIn.Read(buf, 0, buf.Length);
var bufLen = BitConverter.ToInt32(buf, 0);
// Read the encrypted key and IV data from the file and decrypt using the asymmetric algorithm
buf = new byte[bufLen];
fsIn.Read(buf, 0, buf.Length);
buf = DecryptData(buf, privateKey);
var key = new byte[symmetricCypher.KeySize / 8];
var iv = new byte[symmetricCypher.BlockSize / 8];
Array.Copy(buf, key, key.Length);
Array.Copy(buf, key.Length, iv, 0, iv.Length);
// Decript the file data using the symmetric algorithm
using (var cypherKey = symmetricCypher.CreateDecryptor(key, iv))
using (var fsOut = new FileStream(outputFilePath, FileMode.Create))
using (var cs = new CryptoStream(fsOut, cypherKey, CryptoStreamMode.Write))
{
fsIn.CopyTo(cs);
}
}
}
#endregion
#region Key Storage
public static void WritePublicKey(string publicKeyFilePath, string publicKey)
{
File.WriteAllText(publicKeyFilePath, publicKey);
}
public static string ReadPublicKey(string publicKeyFilePath)
{
return File.ReadAllText(publicKeyFilePath);
}
private const string SymmetricSalt = "Stack_Overflow!"; // Change me!
public static string ReadPrivateKey(string privateKeyFilePath, string password)
{
var salt = Encoding.UTF8.GetBytes(SymmetricSalt);
var cypherText = File.ReadAllBytes(privateKeyFilePath);
using (var cypher = new AesManaged())
{
var pdb = new Rfc2898DeriveBytes(password, salt);
var key = pdb.GetBytes(cypher.KeySize / 8);
var iv = pdb.GetBytes(cypher.BlockSize / 8);
using (var decryptor = cypher.CreateDecryptor(key, iv))
using (var msDecrypt = new MemoryStream(cypherText))
using (var csDecrypt = new CryptoStream(msDecrypt, decryptor, CryptoStreamMode.Read))
using (var srDecrypt = new StreamReader(csDecrypt))
{
return srDecrypt.ReadToEnd();
}
}
}
public static void WritePrivateKey(string privateKeyFilePath, string privateKey, string password)
{
var salt = Encoding.UTF8.GetBytes(SymmetricSalt);
using (var cypher = new AesManaged())
{
var pdb = new Rfc2898DeriveBytes(password, salt);
var key = pdb.GetBytes(cypher.KeySize / 8);
var iv = pdb.GetBytes(cypher.BlockSize / 8);
using (var encryptor = cypher.CreateEncryptor(key, iv))
using (var fsEncrypt = new FileStream(privateKeyFilePath, FileMode.Create))
using (var csEncrypt = new CryptoStream(fsEncrypt, encryptor, CryptoStreamMode.Write))
using (var swEncrypt = new StreamWriter(csEncrypt))
{
swEncrypt.Write(privateKey);
}
}
}
#endregion
}
Anwendungsbeispiel:
private static void HybridCryptoTest(string privateKeyPath, string privateKeyPassword, string inputPath)
{
// Setup the test
var publicKeyPath = Path.ChangeExtension(privateKeyPath, ".public");
var outputPath = Path.Combine(Path.ChangeExtension(inputPath, ".enc"));
var testPath = Path.Combine(Path.ChangeExtension(inputPath, ".test"));
if (!File.Exists(privateKeyPath))
{
var keys = AsymmetricProvider.GenerateNewKeyPair(2048);
AsymmetricProvider.WritePublicKey(publicKeyPath, keys.PublicKey);
AsymmetricProvider.WritePrivateKey(privateKeyPath, keys.PrivateKey, privateKeyPassword);
}
// Encrypt the file
var publicKey = AsymmetricProvider.ReadPublicKey(publicKeyPath);
AsymmetricProvider.EncryptFile(inputPath, outputPath, publicKey);
// Decrypt it again to compare against the source file
var privateKey = AsymmetricProvider.ReadPrivateKey(privateKeyPath, privateKeyPassword);
AsymmetricProvider.DecryptFile(outputPath, testPath, privateKey);
// Check that the two files match
var source = File.ReadAllBytes(inputPath);
var dest = File.ReadAllBytes(testPath);
if (source.Length != dest.Length)
throw new Exception("Length does not match");
if (source.Where((t, i) => t != dest[i]).Any())
throw new Exception("Data mismatch");
}