C# Language
Crittografia (System.Security.Cryptography)
Ricerca…
Esempi moderni di crittografia autenticata simmetrica di una stringa
La crittografia è qualcosa di molto difficile e dopo aver passato molto tempo a leggere diversi esempi e vedere quanto sia facile introdurre una qualche forma di vulnerabilità ho trovato una risposta originariamente scritta da @jbtule che ritengo sia molto buona. Buona lettura:
"La migliore medicina generale per la crittografia simmetrica è quello di utilizzare la crittografia autenticato con Associated Data (AEAD), tuttavia questo non è una parte delle librerie crittografiche .net standard. Quindi il primo esempio utilizza AES256 e poi HMAC256 , a due step Encrypt poi MAC , che richiede più overhead e più chiavi.
Il secondo esempio utilizza la pratica più semplice di AES256- GCM utilizzando il castello di Bouncy open source (via nuget).
Entrambi gli esempi hanno una funzione principale che accetta una stringa di messaggio segreta, una o più chiavi e un payload e una stringa crittografati facoltativi e non crittografati facoltativamente preceduti dai dati non segreti. Idealmente NewKey()
questi con chiavi a 256 bit generate casualmente, vedi NewKey()
.
Entrambi gli esempi hanno anche metodi di supporto che utilizzano una password di stringa per generare le chiavi. Questi metodi di supporto sono forniti per comodità con altri esempi, tuttavia sono molto meno sicuri perché la forza della password sarà molto più debole di una chiave a 256 bit .
Aggiornamento: sovraccarico di byte[]
aggiunto, e solo Gist ha la formattazione completa con rientri a 4 spazi e documenti API a causa dei limiti di risposta di StackOverflow. "
.NET Built-in Encrypt (AES) -Then-MAC (HMAC) [Gist]
/*
* This work (Modern Encryption of a String C#, by James Tuley),
* identified by James Tuley, is free of known copyright restrictions.
* https://gist.github.com/4336842
* http://creativecommons.org/publicdomain/mark/1.0/
*/
using System;
using System.IO;
using System.Security.Cryptography;
using System.Text;
namespace Encryption
{
public static class AESThenHMAC
{
private static readonly RandomNumberGenerator Random = RandomNumberGenerator.Create();
//Preconfigured Encryption Parameters
public static readonly int BlockBitSize = 128;
public static readonly int KeyBitSize = 256;
//Preconfigured Password Key Derivation Parameters
public static readonly int SaltBitSize = 64;
public static readonly int Iterations = 10000;
public static readonly int MinPasswordLength = 12;
/// <summary>
/// Helper that generates a random key on each call.
/// </summary>
/// <returns></returns>
public static byte[] NewKey()
{
var key = new byte[KeyBitSize / 8];
Random.GetBytes(key);
return key;
}
/// <summary>
/// Simple Encryption (AES) then Authentication (HMAC) for a UTF8 Message.
/// </summary>
/// <param name="secretMessage">The secret message.</param>
/// <param name="cryptKey">The crypt key.</param>
/// <param name="authKey">The auth key.</param>
/// <param name="nonSecretPayload">(Optional) Non-Secret Payload.</param>
/// <returns>
/// Encrypted Message
/// </returns>
/// <exception cref="System.ArgumentException">Secret Message Required!;secretMessage</exception>
/// <remarks>
/// Adds overhead of (Optional-Payload + BlockSize(16) + Message-Padded-To-Blocksize + HMac-Tag(32)) * 1.33 Base64
/// </remarks>
public static string SimpleEncrypt(string secretMessage, byte[] cryptKey, byte[] authKey,
byte[] nonSecretPayload = null)
{
if (string.IsNullOrEmpty(secretMessage))
throw new ArgumentException("Secret Message Required!", "secretMessage");
var plainText = Encoding.UTF8.GetBytes(secretMessage);
var cipherText = SimpleEncrypt(plainText, cryptKey, authKey, nonSecretPayload);
return Convert.ToBase64String(cipherText);
}
/// <summary>
/// Simple Authentication (HMAC) then Decryption (AES) for a secrets UTF8 Message.
/// </summary>
/// <param name="encryptedMessage">The encrypted message.</param>
/// <param name="cryptKey">The crypt key.</param>
/// <param name="authKey">The auth key.</param>
/// <param name="nonSecretPayloadLength">Length of the non secret payload.</param>
/// <returns>
/// Decrypted Message
/// </returns>
/// <exception cref="System.ArgumentException">Encrypted Message Required!;encryptedMessage</exception>
public static string SimpleDecrypt(string encryptedMessage, byte[] cryptKey, byte[] authKey,
int nonSecretPayloadLength = 0)
{
if (string.IsNullOrWhiteSpace(encryptedMessage))
throw new ArgumentException("Encrypted Message Required!", "encryptedMessage");
var cipherText = Convert.FromBase64String(encryptedMessage);
var plainText = SimpleDecrypt(cipherText, cryptKey, authKey, nonSecretPayloadLength);
return plainText == null ? null : Encoding.UTF8.GetString(plainText);
}
/// <summary>
/// Simple Encryption (AES) then Authentication (HMAC) of a UTF8 message
/// using Keys derived from a Password (PBKDF2).
/// </summary>
/// <param name="secretMessage">The secret message.</param>
/// <param name="password">The password.</param>
/// <param name="nonSecretPayload">The non secret payload.</param>
/// <returns>
/// Encrypted Message
/// </returns>
/// <exception cref="System.ArgumentException">password</exception>
/// <remarks>
/// Significantly less secure than using random binary keys.
/// Adds additional non secret payload for key generation parameters.
/// </remarks>
public static string SimpleEncryptWithPassword(string secretMessage, string password,
byte[] nonSecretPayload = null)
{
if (string.IsNullOrEmpty(secretMessage))
throw new ArgumentException("Secret Message Required!", "secretMessage");
var plainText = Encoding.UTF8.GetBytes(secretMessage);
var cipherText = SimpleEncryptWithPassword(plainText, password, nonSecretPayload);
return Convert.ToBase64String(cipherText);
}
/// <summary>
/// Simple Authentication (HMAC) and then Descryption (AES) of a UTF8 Message
/// using keys derived from a password (PBKDF2).
/// </summary>
/// <param name="encryptedMessage">The encrypted message.</param>
/// <param name="password">The password.</param>
/// <param name="nonSecretPayloadLength">Length of the non secret payload.</param>
/// <returns>
/// Decrypted Message
/// </returns>
/// <exception cref="System.ArgumentException">Encrypted Message Required!;encryptedMessage</exception>
/// <remarks>
/// Significantly less secure than using random binary keys.
/// </remarks>
public static string SimpleDecryptWithPassword(string encryptedMessage, string password,
int nonSecretPayloadLength = 0)
{
if (string.IsNullOrWhiteSpace(encryptedMessage))
throw new ArgumentException("Encrypted Message Required!", "encryptedMessage");
var cipherText = Convert.FromBase64String(encryptedMessage);
var plainText = SimpleDecryptWithPassword(cipherText, password, nonSecretPayloadLength);
return plainText == null ? null : Encoding.UTF8.GetString(plainText);
}
public static byte[] SimpleEncrypt(byte[] secretMessage, byte[] cryptKey, byte[] authKey, byte[] nonSecretPayload = null)
{
//User Error Checks
if (cryptKey == null || cryptKey.Length != KeyBitSize / 8)
throw new ArgumentException(String.Format("Key needs to be {0} bit!", KeyBitSize), "cryptKey");
if (authKey == null || authKey.Length != KeyBitSize / 8)
throw new ArgumentException(String.Format("Key needs to be {0} bit!", KeyBitSize), "authKey");
if (secretMessage == null || secretMessage.Length < 1)
throw new ArgumentException("Secret Message Required!", "secretMessage");
//non-secret payload optional
nonSecretPayload = nonSecretPayload ?? new byte[] { };
byte[] cipherText;
byte[] iv;
using (var aes = new AesManaged
{
KeySize = KeyBitSize,
BlockSize = BlockBitSize,
Mode = CipherMode.CBC,
Padding = PaddingMode.PKCS7
})
{
//Use random IV
aes.GenerateIV();
iv = aes.IV;
using (var encrypter = aes.CreateEncryptor(cryptKey, iv))
using (var cipherStream = new MemoryStream())
{
using (var cryptoStream = new CryptoStream(cipherStream, encrypter, CryptoStreamMode.Write))
using (var binaryWriter = new BinaryWriter(cryptoStream))
{
//Encrypt Data
binaryWriter.Write(secretMessage);
}
cipherText = cipherStream.ToArray();
}
}
//Assemble encrypted message and add authentication
using (var hmac = new HMACSHA256(authKey))
using (var encryptedStream = new MemoryStream())
{
using (var binaryWriter = new BinaryWriter(encryptedStream))
{
//Prepend non-secret payload if any
binaryWriter.Write(nonSecretPayload);
//Prepend IV
binaryWriter.Write(iv);
//Write Ciphertext
binaryWriter.Write(cipherText);
binaryWriter.Flush();
//Authenticate all data
var tag = hmac.ComputeHash(encryptedStream.ToArray());
//Postpend tag
binaryWriter.Write(tag);
}
return encryptedStream.ToArray();
}
}
public static byte[] SimpleDecrypt(byte[] encryptedMessage, byte[] cryptKey, byte[] authKey, int nonSecretPayloadLength = 0)
{
//Basic Usage Error Checks
if (cryptKey == null || cryptKey.Length != KeyBitSize / 8)
throw new ArgumentException(String.Format("CryptKey needs to be {0} bit!", KeyBitSize), "cryptKey");
if (authKey == null || authKey.Length != KeyBitSize / 8)
throw new ArgumentException(String.Format("AuthKey needs to be {0} bit!", KeyBitSize), "authKey");
if (encryptedMessage == null || encryptedMessage.Length == 0)
throw new ArgumentException("Encrypted Message Required!", "encryptedMessage");
using (var hmac = new HMACSHA256(authKey))
{
var sentTag = new byte[hmac.HashSize / 8];
//Calculate Tag
var calcTag = hmac.ComputeHash(encryptedMessage, 0, encryptedMessage.Length - sentTag.Length);
var ivLength = (BlockBitSize / 8);
//if message length is to small just return null
if (encryptedMessage.Length < sentTag.Length + nonSecretPayloadLength + ivLength)
return null;
//Grab Sent Tag
Array.Copy(encryptedMessage, encryptedMessage.Length - sentTag.Length, sentTag, 0, sentTag.Length);
//Compare Tag with constant time comparison
var compare = 0;
for (var i = 0; i < sentTag.Length; i++)
compare |= sentTag[i] ^ calcTag[i];
//if message doesn't authenticate return null
if (compare != 0)
return null;
using (var aes = new AesManaged
{
KeySize = KeyBitSize,
BlockSize = BlockBitSize,
Mode = CipherMode.CBC,
Padding = PaddingMode.PKCS7
})
{
//Grab IV from message
var iv = new byte[ivLength];
Array.Copy(encryptedMessage, nonSecretPayloadLength, iv, 0, iv.Length);
using (var decrypter = aes.CreateDecryptor(cryptKey, iv))
using (var plainTextStream = new MemoryStream())
{
using (var decrypterStream = new CryptoStream(plainTextStream, decrypter, CryptoStreamMode.Write))
using (var binaryWriter = new BinaryWriter(decrypterStream))
{
//Decrypt Cipher Text from Message
binaryWriter.Write(
encryptedMessage,
nonSecretPayloadLength + iv.Length,
encryptedMessage.Length - nonSecretPayloadLength - iv.Length - sentTag.Length
);
}
//Return Plain Text
return plainTextStream.ToArray();
}
}
}
}
public static byte[] SimpleEncryptWithPassword(byte[] secretMessage, string password, byte[] nonSecretPayload = null)
{
nonSecretPayload = nonSecretPayload ?? new byte[] {};
//User Error Checks
if (string.IsNullOrWhiteSpace(password) || password.Length < MinPasswordLength)
throw new ArgumentException(String.Format("Must have a password of at least {0} characters!", MinPasswordLength), "password");
if (secretMessage == null || secretMessage.Length ==0)
throw new ArgumentException("Secret Message Required!", "secretMessage");
var payload = new byte[((SaltBitSize / 8) * 2) + nonSecretPayload.Length];
Array.Copy(nonSecretPayload, payload, nonSecretPayload.Length);
int payloadIndex = nonSecretPayload.Length;
byte[] cryptKey;
byte[] authKey;
//Use Random Salt to prevent pre-generated weak password attacks.
using (var generator = new Rfc2898DeriveBytes(password, SaltBitSize / 8, Iterations))
{
var salt = generator.Salt;
//Generate Keys
cryptKey = generator.GetBytes(KeyBitSize / 8);
//Create Non Secret Payload
Array.Copy(salt, 0, payload, payloadIndex, salt.Length);
payloadIndex += salt.Length;
}
//Deriving separate key, might be less efficient than using HKDF,
//but now compatible with RNEncryptor which had a very similar wireformat and requires less code than HKDF.
using (var generator = new Rfc2898DeriveBytes(password, SaltBitSize / 8, Iterations))
{
var salt = generator.Salt;
//Generate Keys
authKey = generator.GetBytes(KeyBitSize / 8);
//Create Rest of Non Secret Payload
Array.Copy(salt, 0, payload, payloadIndex, salt.Length);
}
return SimpleEncrypt(secretMessage, cryptKey, authKey, payload);
}
public static byte[] SimpleDecryptWithPassword(byte[] encryptedMessage, string password, int nonSecretPayloadLength = 0)
{
//User Error Checks
if (string.IsNullOrWhiteSpace(password) || password.Length < MinPasswordLength)
throw new ArgumentException(String.Format("Must have a password of at least {0} characters!", MinPasswordLength), "password");
if (encryptedMessage == null || encryptedMessage.Length == 0)
throw new ArgumentException("Encrypted Message Required!", "encryptedMessage");
var cryptSalt = new byte[SaltBitSize / 8];
var authSalt = new byte[SaltBitSize / 8];
//Grab Salt from Non-Secret Payload
Array.Copy(encryptedMessage, nonSecretPayloadLength, cryptSalt, 0, cryptSalt.Length);
Array.Copy(encryptedMessage, nonSecretPayloadLength + cryptSalt.Length, authSalt, 0, authSalt.Length);
byte[] cryptKey;
byte[] authKey;
//Generate crypt key
using (var generator = new Rfc2898DeriveBytes(password, cryptSalt, Iterations))
{
cryptKey = generator.GetBytes(KeyBitSize / 8);
}
//Generate auth key
using (var generator = new Rfc2898DeriveBytes(password, authSalt, Iterations))
{
authKey = generator.GetBytes(KeyBitSize / 8);
}
return SimpleDecrypt(encryptedMessage, cryptKey, authKey, cryptSalt.Length + authSalt.Length + nonSecretPayloadLength);
}
}
}
Castello gonfiabile AES-GCM [Gist]
/*
* This work (Modern Encryption of a String C#, by James Tuley),
* identified by James Tuley, is free of known copyright restrictions.
* https://gist.github.com/4336842
* http://creativecommons.org/publicdomain/mark/1.0/
*/
using System;
using System.IO;
using System.Text;
using Org.BouncyCastle.Crypto;
using Org.BouncyCastle.Crypto.Engines;
using Org.BouncyCastle.Crypto.Generators;
using Org.BouncyCastle.Crypto.Modes;
using Org.BouncyCastle.Crypto.Parameters;
using Org.BouncyCastle.Security;
namespace Encryption
{
public static class AESGCM
{
private static readonly SecureRandom Random = new SecureRandom();
//Preconfigured Encryption Parameters
public static readonly int NonceBitSize = 128;
public static readonly int MacBitSize = 128;
public static readonly int KeyBitSize = 256;
//Preconfigured Password Key Derivation Parameters
public static readonly int SaltBitSize = 128;
public static readonly int Iterations = 10000;
public static readonly int MinPasswordLength = 12;
/// <summary>
/// Helper that generates a random new key on each call.
/// </summary>
/// <returns></returns>
public static byte[] NewKey()
{
var key = new byte[KeyBitSize / 8];
Random.NextBytes(key);
return key;
}
/// <summary>
/// Simple Encryption And Authentication (AES-GCM) of a UTF8 string.
/// </summary>
/// <param name="secretMessage">The secret message.</param>
/// <param name="key">The key.</param>
/// <param name="nonSecretPayload">Optional non-secret payload.</param>
/// <returns>
/// Encrypted Message
/// </returns>
/// <exception cref="System.ArgumentException">Secret Message Required!;secretMessage</exception>
/// <remarks>
/// Adds overhead of (Optional-Payload + BlockSize(16) + Message + HMac-Tag(16)) * 1.33 Base64
/// </remarks>
public static string SimpleEncrypt(string secretMessage, byte[] key, byte[] nonSecretPayload = null)
{
if (string.IsNullOrEmpty(secretMessage))
throw new ArgumentException("Secret Message Required!", "secretMessage");
var plainText = Encoding.UTF8.GetBytes(secretMessage);
var cipherText = SimpleEncrypt(plainText, key, nonSecretPayload);
return Convert.ToBase64String(cipherText);
}
/// <summary>
/// Simple Decryption & Authentication (AES-GCM) of a UTF8 Message
/// </summary>
/// <param name="encryptedMessage">The encrypted message.</param>
/// <param name="key">The key.</param>
/// <param name="nonSecretPayloadLength">Length of the optional non-secret payload.</param>
/// <returns>Decrypted Message</returns>
public static string SimpleDecrypt(string encryptedMessage, byte[] key, int nonSecretPayloadLength = 0)
{
if (string.IsNullOrEmpty(encryptedMessage))
throw new ArgumentException("Encrypted Message Required!", "encryptedMessage");
var cipherText = Convert.FromBase64String(encryptedMessage);
var plainText = SimpleDecrypt(cipherText, key, nonSecretPayloadLength);
return plainText == null ? null : Encoding.UTF8.GetString(plainText);
}
/// <summary>
/// Simple Encryption And Authentication (AES-GCM) of a UTF8 String
/// using key derived from a password (PBKDF2).
/// </summary>
/// <param name="secretMessage">The secret message.</param>
/// <param name="password">The password.</param>
/// <param name="nonSecretPayload">The non secret payload.</param>
/// <returns>
/// Encrypted Message
/// </returns>
/// <remarks>
/// Significantly less secure than using random binary keys.
/// Adds additional non secret payload for key generation parameters.
/// </remarks>
public static string SimpleEncryptWithPassword(string secretMessage, string password,
byte[] nonSecretPayload = null)
{
if (string.IsNullOrEmpty(secretMessage))
throw new ArgumentException("Secret Message Required!", "secretMessage");
var plainText = Encoding.UTF8.GetBytes(secretMessage);
var cipherText = SimpleEncryptWithPassword(plainText, password, nonSecretPayload);
return Convert.ToBase64String(cipherText);
}
/// <summary>
/// Simple Decryption and Authentication (AES-GCM) of a UTF8 message
/// using a key derived from a password (PBKDF2)
/// </summary>
/// <param name="encryptedMessage">The encrypted message.</param>
/// <param name="password">The password.</param>
/// <param name="nonSecretPayloadLength">Length of the non secret payload.</param>
/// <returns>
/// Decrypted Message
/// </returns>
/// <exception cref="System.ArgumentException">Encrypted Message Required!;encryptedMessage</exception>
/// <remarks>
/// Significantly less secure than using random binary keys.
/// </remarks>
public static string SimpleDecryptWithPassword(string encryptedMessage, string password,
int nonSecretPayloadLength = 0)
{
if (string.IsNullOrWhiteSpace(encryptedMessage))
throw new ArgumentException("Encrypted Message Required!", "encryptedMessage");
var cipherText = Convert.FromBase64String(encryptedMessage);
var plainText = SimpleDecryptWithPassword(cipherText, password, nonSecretPayloadLength);
return plainText == null ? null : Encoding.UTF8.GetString(plainText);
}
public static byte[] SimpleEncrypt(byte[] secretMessage, byte[] key, byte[] nonSecretPayload = null)
{
//User Error Checks
if (key == null || key.Length != KeyBitSize / 8)
throw new ArgumentException(String.Format("Key needs to be {0} bit!", KeyBitSize), "key");
if (secretMessage == null || secretMessage.Length == 0)
throw new ArgumentException("Secret Message Required!", "secretMessage");
//Non-secret Payload Optional
nonSecretPayload = nonSecretPayload ?? new byte[] { };
//Using random nonce large enough not to repeat
var nonce = new byte[NonceBitSize / 8];
Random.NextBytes(nonce, 0, nonce.Length);
var cipher = new GcmBlockCipher(new AesFastEngine());
var parameters = new AeadParameters(new KeyParameter(key), MacBitSize, nonce, nonSecretPayload);
cipher.Init(true, parameters);
//Generate Cipher Text With Auth Tag
var cipherText = new byte[cipher.GetOutputSize(secretMessage.Length)];
var len = cipher.ProcessBytes(secretMessage, 0, secretMessage.Length, cipherText, 0);
cipher.DoFinal(cipherText, len);
//Assemble Message
using (var combinedStream = new MemoryStream())
{
using (var binaryWriter = new BinaryWriter(combinedStream))
{
//Prepend Authenticated Payload
binaryWriter.Write(nonSecretPayload);
//Prepend Nonce
binaryWriter.Write(nonce);
//Write Cipher Text
binaryWriter.Write(cipherText);
}
return combinedStream.ToArray();
}
}
public static byte[] SimpleDecrypt(byte[] encryptedMessage, byte[] key, int nonSecretPayloadLength = 0)
{
//User Error Checks
if (key == null || key.Length != KeyBitSize / 8)
throw new ArgumentException(String.Format("Key needs to be {0} bit!", KeyBitSize), "key");
if (encryptedMessage == null || encryptedMessage.Length == 0)
throw new ArgumentException("Encrypted Message Required!", "encryptedMessage");
using (var cipherStream = new MemoryStream(encryptedMessage))
using (var cipherReader = new BinaryReader(cipherStream))
{
//Grab Payload
var nonSecretPayload = cipherReader.ReadBytes(nonSecretPayloadLength);
//Grab Nonce
var nonce = cipherReader.ReadBytes(NonceBitSize / 8);
var cipher = new GcmBlockCipher(new AesFastEngine());
var parameters = new AeadParameters(new KeyParameter(key), MacBitSize, nonce, nonSecretPayload);
cipher.Init(false, parameters);
//Decrypt Cipher Text
var cipherText = cipherReader.ReadBytes(encryptedMessage.Length - nonSecretPayloadLength - nonce.Length);
var plainText = new byte[cipher.GetOutputSize(cipherText.Length)];
try
{
var len = cipher.ProcessBytes(cipherText, 0, cipherText.Length, plainText, 0);
cipher.DoFinal(plainText, len);
}
catch (InvalidCipherTextException)
{
//Return null if it doesn't authenticate
return null;
}
return plainText;
}
}
public static byte[] SimpleEncryptWithPassword(byte[] secretMessage, string password, byte[] nonSecretPayload = null)
{
nonSecretPayload = nonSecretPayload ?? new byte[] {};
//User Error Checks
if (string.IsNullOrWhiteSpace(password) || password.Length < MinPasswordLength)
throw new ArgumentException(String.Format("Must have a password of at least {0} characters!", MinPasswordLength), "password");
if (secretMessage == null || secretMessage.Length == 0)
throw new ArgumentException("Secret Message Required!", "secretMessage");
var generator = new Pkcs5S2ParametersGenerator();
//Use Random Salt to minimize pre-generated weak password attacks.
var salt = new byte[SaltBitSize / 8];
Random.NextBytes(salt);
generator.Init(
PbeParametersGenerator.Pkcs5PasswordToBytes(password.ToCharArray()),
salt,
Iterations);
//Generate Key
var key = (KeyParameter)generator.GenerateDerivedMacParameters(KeyBitSize);
//Create Full Non Secret Payload
var payload = new byte[salt.Length + nonSecretPayload.Length];
Array.Copy(nonSecretPayload, payload, nonSecretPayload.Length);
Array.Copy(salt,0, payload,nonSecretPayload.Length, salt.Length);
return SimpleEncrypt(secretMessage, key.GetKey(), payload);
}
public static byte[] SimpleDecryptWithPassword(byte[] encryptedMessage, string password, int nonSecretPayloadLength = 0)
{
//User Error Checks
if (string.IsNullOrWhiteSpace(password) || password.Length < MinPasswordLength)
throw new ArgumentException(String.Format("Must have a password of at least {0} characters!", MinPasswordLength), "password");
if (encryptedMessage == null || encryptedMessage.Length == 0)
throw new ArgumentException("Encrypted Message Required!", "encryptedMessage");
var generator = new Pkcs5S2ParametersGenerator();
//Grab Salt from Payload
var salt = new byte[SaltBitSize / 8];
Array.Copy(encryptedMessage, nonSecretPayloadLength, salt, 0, salt.Length);
generator.Init(
PbeParametersGenerator.Pkcs5PasswordToBytes(password.ToCharArray()),
salt,
Iterations);
//Generate Key
var key = (KeyParameter)generator.GenerateDerivedMacParameters(KeyBitSize);
return SimpleDecrypt(encryptedMessage, key.GetKey(), salt.Length + nonSecretPayloadLength);
}
}
}
Introduzione alla crittografia simmetrica e asimmetrica
È possibile migliorare la sicurezza per il transito o l'archiviazione dei dati implementando tecniche di crittografia. Fondamentalmente ci sono due approcci quando si utilizza System.Security.Cryptography : simmetrica e asimmetrica.
Crittografia simmetrica
Questo metodo utilizza una chiave privata per eseguire la trasformazione dei dati.
Professionisti:
- Gli algoritmi simmetrici consumano meno risorse e sono più veloci di quelli asimmetrici.
- La quantità di dati che puoi crittografare è illimitata.
Contro:
- La crittografia e la decrittografia utilizzano la stessa chiave. Qualcuno sarà in grado di decrittografare i tuoi dati se la chiave è compromessa.
- Potresti finire con molte chiavi segrete da gestire se scegli di utilizzare una chiave segreta diversa per dati diversi.
In System.Security.Cryptography sono disponibili classi diverse che eseguono la crittografia simmetrica, denominate cifrari a blocchi :
- AesManaged (algoritmo AES ).
- AesCryptoServiceProvider (algoritmo AES FIPS 140-2 reclamo ).
- DESCryptoServiceProvider (algoritmo DES ).
- RC2CryptoServiceProvider (algoritmo Rivest Cipher 2 ).
- RijndaelManaged (algoritmo AES ). Nota : RijndaelManaged non è un reclamo FIPS-197 .
- TripleDES (algoritmo TripleDES ).
Crittografia asimmetrica
Questo metodo utilizza una combinazione di chiavi pubbliche e private per eseguire la trasformazione dei dati.
Professionisti:
- Utilizza chiavi più grandi di algoritmi simmetrici, quindi sono meno suscettibili di essere fessurate usando la forza bruta.
- È più facile garantire chi è in grado di crittografare e decrittografare i dati perché si basa su due chiavi (pubbliche e private).
Contro:
- Esiste un limite alla quantità di dati che è possibile crittografare. Il limite è diverso per ciascun algoritmo ed è in genere proporzionale alla dimensione della chiave dell'algoritmo. Ad esempio, un oggetto RSACryptoServiceProvider con una lunghezza chiave di 1.024 bit può solo crittografare un messaggio inferiore a 128 byte.
- Gli algoritmi asimmetrici sono molto lenti rispetto agli algoritmi simmetrici.
Sotto System.Security.Cryptography hai accesso a diverse classi che eseguono la crittografia asimmetrica:
- DSACryptoServiceProvider (algoritmo Algoritmo di firma digitale )
- RSACryptoServiceProvider (algoritmo Algoritmo RSA )
Hash password
Le password non dovrebbero mai essere archiviate come testo normale! Dovrebbero essere sottoposti a hash con un sale generato in modo casuale (per difendersi dagli attacchi del rainbow table) usando un algoritmo di hashing della password lenta. Un elevato numero di iterazioni (> 10k) può essere utilizzato per rallentare gli attacchi di forza bruta. Un ritardo di ~ 100 ms è accettabile per un utente che accede, ma rende difficile rompere una password lunga. Quando si sceglie un numero di iterazioni, è necessario utilizzare il valore massimo tollerabile per la propria applicazione e aumentarlo man mano che le prestazioni del computer migliorano. Dovrai inoltre considerare l'interruzione di richieste ripetute che potrebbero essere utilizzate come attacco DoS.
Quando si hashing per la prima volta che un sale può essere generato per te, il hash e il sale risultanti possono quindi essere memorizzati in un file.
private void firstHash(string userName, string userPassword, int numberOfItterations)
{
Rfc2898DeriveBytes PBKDF2 = new Rfc2898DeriveBytes(userPassword, 8, numberOfItterations); //Hash the password with a 8 byte salt
byte[] hashedPassword = PBKDF2.GetBytes(20); //Returns a 20 byte hash
byte[] salt = PBKDF2.Salt;
writeHashToFile(userName, hashedPassword, salt, numberOfItterations); //Store the hashed password with the salt and number of itterations to check against future password entries
}
Verifica la password di un utente esistente, leggi il suo hash e il sale da un file e confronta con l'hash della password inserita
private bool checkPassword(string userName, string userPassword, int numberOfItterations)
{
byte[] usersHash = getUserHashFromFile(userName);
byte[] userSalt = getUserSaltFromFile(userName);
Rfc2898DeriveBytes PBKDF2 = new Rfc2898DeriveBytes(userPassword, userSalt, numberOfItterations); //Hash the password with the users salt
byte[] hashedPassword = PBKDF2.GetBytes(20); //Returns a 20 byte hash
bool passwordsMach = comparePasswords(usersHash, hashedPassword); //Compares byte arrays
return passwordsMach;
}
Semplice crittografia di file simmetrici
Nell'esempio di codice seguente viene illustrato un metodo rapido e semplice per crittografare e decodificare i file utilizzando l'algoritmo di crittografia simmetrica AES.
Il codice genera in modo casuale i vettori Salt e Initialization ogni volta che un file viene crittografato, il che significa che la crittografia dello stesso file con la stessa password porterà sempre a output diversi. Il sale e IV vengono scritti nel file di output in modo che solo la password è necessaria per decrittografarlo.
public static void ProcessFile(string inputPath, string password, bool encryptMode, string outputPath)
{
using (var cypher = new AesManaged())
using (var fsIn = new FileStream(inputPath, FileMode.Open))
using (var fsOut = new FileStream(outputPath, FileMode.Create))
{
const int saltLength = 256;
var salt = new byte[saltLength];
var iv = new byte[cypher.BlockSize / 8];
if (encryptMode)
{
// Generate random salt and IV, then write them to file
using (var rng = new RNGCryptoServiceProvider())
{
rng.GetBytes(salt);
rng.GetBytes(iv);
}
fsOut.Write(salt, 0, salt.Length);
fsOut.Write(iv, 0, iv.Length);
}
else
{
// Read the salt and IV from the file
fsIn.Read(salt, 0, saltLength);
fsIn.Read(iv, 0, iv.Length);
}
// Generate a secure password, based on the password and salt provided
var pdb = new Rfc2898DeriveBytes(password, salt);
var key = pdb.GetBytes(cypher.KeySize / 8);
// Encrypt or decrypt the file
using (var cryptoTransform = encryptMode
? cypher.CreateEncryptor(key, iv)
: cypher.CreateDecryptor(key, iv))
using (var cs = new CryptoStream(fsOut, cryptoTransform, CryptoStreamMode.Write))
{
fsIn.CopyTo(cs);
}
}
}
Dati casuali protetti da crittografia
Ci sono volte in cui la classe Random () del framework non può essere considerata abbastanza casuale, dato che si basa su un generatore di numeri psuedo-random. Le classi Crypto del framework, tuttavia, forniscono qualcosa di più robusto sotto forma di RNGCryptoServiceProvider.
I seguenti esempi di codice dimostrano come generare array, stringhe e numeri di byte crittograficamente sicuri.
Matrice di byte casuali
public static byte[] GenerateRandomData(int length)
{
var rnd = new byte[length];
using (var rng = new RNGCryptoServiceProvider())
rng.GetBytes(rnd);
return rnd;
}
Numero intero casuale (con distribuzione uniforme)
public static int GenerateRandomInt(int minVal=0, int maxVal=100)
{
var rnd = new byte[4];
using (var rng = new RNGCryptoServiceProvider())
rng.GetBytes(rnd);
var i = Math.Abs(BitConverter.ToInt32(rnd, 0));
return Convert.ToInt32(i % (maxVal - minVal + 1) + minVal);
}
Stringa casuale
public static string GenerateRandomString(int length, string allowableChars=null)
{
if (string.IsNullOrEmpty(allowableChars))
allowableChars = @"ABCDEFGHIJKLMNOPQRSTUVWXYZ";
// Generate random data
var rnd = new byte[length];
using (var rng = new RNGCryptoServiceProvider())
rng.GetBytes(rnd);
// Generate the output string
var allowable = allowableChars.ToCharArray();
var l = allowable.Length;
var chars = new char[length];
for (var i = 0; i < length; i++)
chars[i] = allowable[rnd[i] % l];
return new string(chars);
}
Crittografia file asimmetrica veloce
La crittografia asimmetrica è spesso considerata preferibile alla crittografia simmetrica per il trasferimento di messaggi ad altre parti. Ciò è dovuto principalmente al fatto che nega molti dei rischi legati allo scambio di una chiave condivisa e garantisce che mentre chiunque abbia la chiave pubblica possa crittografare un messaggio per il destinatario previsto, solo quel destinatario può decrittografarlo. Sfortunatamente il principale aspetto negativo degli algoritmi di crittografia asimmetrica è che sono molto più lenti dei loro cugini simmetrici. Di conseguenza, la crittografia asimmetrica di file, soprattutto di grandi dimensioni, può spesso essere un processo molto intensivo dal punto di vista computazionale.
Per fornire sicurezza e prestazioni, è possibile adottare un approccio ibrido. Ciò comporta la generazione crittograficamente casuale di un vettore di chiave e di inizializzazione per la crittografia simmetrica . Questi valori vengono quindi crittografati utilizzando un algoritmo asimmetrico e scritti nel file di output, prima di essere utilizzati per crittografare i dati di origine in modo simmetrico e aggiungerli all'output.
Questo approccio fornisce un alto grado di prestazioni e sicurezza, in quanto i dati vengono crittografati utilizzando un algoritmo simmetrico (veloce) e la chiave e iv, entrambi generati casualmente (sicuri) sono crittografati da un algoritmo asimmetrico (sicuro). Ha anche il vantaggio aggiunto che lo stesso payload crittografato in diverse occasioni avrà un testo cifrato molto diverso, poiché le chiavi simmetriche vengono generate casualmente ogni volta.
La seguente classe dimostra la crittografia asimmetrica di stringhe e array di byte, oltre alla crittografia ibrida dei file.
public static class AsymmetricProvider
{
#region Key Generation
public class KeyPair
{
public string PublicKey { get; set; }
public string PrivateKey { get; set; }
}
public static KeyPair GenerateNewKeyPair(int keySize = 4096)
{
// KeySize is measured in bits. 1024 is the default, 2048 is better, 4096 is more robust but takes a fair bit longer to generate.
using (var rsa = new RSACryptoServiceProvider(keySize))
{
return new KeyPair {PublicKey = rsa.ToXmlString(false), PrivateKey = rsa.ToXmlString(true)};
}
}
#endregion
#region Asymmetric Data Encryption and Decryption
public static byte[] EncryptData(byte[] data, string publicKey)
{
using (var asymmetricProvider = new RSACryptoServiceProvider())
{
asymmetricProvider.FromXmlString(publicKey);
return asymmetricProvider.Encrypt(data, true);
}
}
public static byte[] DecryptData(byte[] data, string publicKey)
{
using (var asymmetricProvider = new RSACryptoServiceProvider())
{
asymmetricProvider.FromXmlString(publicKey);
if (asymmetricProvider.PublicOnly)
throw new Exception("The key provided is a public key and does not contain the private key elements required for decryption");
return asymmetricProvider.Decrypt(data, true);
}
}
public static string EncryptString(string value, string publicKey)
{
return Convert.ToBase64String(EncryptData(Encoding.UTF8.GetBytes(value), publicKey));
}
public static string DecryptString(string value, string privateKey)
{
return Encoding.UTF8.GetString(EncryptData(Convert.FromBase64String(value), privateKey));
}
#endregion
#region Hybrid File Encryption and Decription
public static void EncryptFile(string inputFilePath, string outputFilePath, string publicKey)
{
using (var symmetricCypher = new AesManaged())
{
// Generate random key and IV for symmetric encryption
var key = new byte[symmetricCypher.KeySize / 8];
var iv = new byte[symmetricCypher.BlockSize / 8];
using (var rng = new RNGCryptoServiceProvider())
{
rng.GetBytes(key);
rng.GetBytes(iv);
}
// Encrypt the symmetric key and IV
var buf = new byte[key.Length + iv.Length];
Array.Copy(key, buf, key.Length);
Array.Copy(iv, 0, buf, key.Length, iv.Length);
buf = EncryptData(buf, publicKey);
var bufLen = BitConverter.GetBytes(buf.Length);
// Symmetrically encrypt the data and write it to the file, along with the encrypted key and iv
using (var cypherKey = symmetricCypher.CreateEncryptor(key, iv))
using (var fsIn = new FileStream(inputFilePath, FileMode.Open))
using (var fsOut = new FileStream(outputFilePath, FileMode.Create))
using (var cs = new CryptoStream(fsOut, cypherKey, CryptoStreamMode.Write))
{
fsOut.Write(bufLen,0, bufLen.Length);
fsOut.Write(buf, 0, buf.Length);
fsIn.CopyTo(cs);
}
}
}
public static void DecryptFile(string inputFilePath, string outputFilePath, string privateKey)
{
using (var symmetricCypher = new AesManaged())
using (var fsIn = new FileStream(inputFilePath, FileMode.Open))
{
// Determine the length of the encrypted key and IV
var buf = new byte[sizeof(int)];
fsIn.Read(buf, 0, buf.Length);
var bufLen = BitConverter.ToInt32(buf, 0);
// Read the encrypted key and IV data from the file and decrypt using the asymmetric algorithm
buf = new byte[bufLen];
fsIn.Read(buf, 0, buf.Length);
buf = DecryptData(buf, privateKey);
var key = new byte[symmetricCypher.KeySize / 8];
var iv = new byte[symmetricCypher.BlockSize / 8];
Array.Copy(buf, key, key.Length);
Array.Copy(buf, key.Length, iv, 0, iv.Length);
// Decript the file data using the symmetric algorithm
using (var cypherKey = symmetricCypher.CreateDecryptor(key, iv))
using (var fsOut = new FileStream(outputFilePath, FileMode.Create))
using (var cs = new CryptoStream(fsOut, cypherKey, CryptoStreamMode.Write))
{
fsIn.CopyTo(cs);
}
}
}
#endregion
#region Key Storage
public static void WritePublicKey(string publicKeyFilePath, string publicKey)
{
File.WriteAllText(publicKeyFilePath, publicKey);
}
public static string ReadPublicKey(string publicKeyFilePath)
{
return File.ReadAllText(publicKeyFilePath);
}
private const string SymmetricSalt = "Stack_Overflow!"; // Change me!
public static string ReadPrivateKey(string privateKeyFilePath, string password)
{
var salt = Encoding.UTF8.GetBytes(SymmetricSalt);
var cypherText = File.ReadAllBytes(privateKeyFilePath);
using (var cypher = new AesManaged())
{
var pdb = new Rfc2898DeriveBytes(password, salt);
var key = pdb.GetBytes(cypher.KeySize / 8);
var iv = pdb.GetBytes(cypher.BlockSize / 8);
using (var decryptor = cypher.CreateDecryptor(key, iv))
using (var msDecrypt = new MemoryStream(cypherText))
using (var csDecrypt = new CryptoStream(msDecrypt, decryptor, CryptoStreamMode.Read))
using (var srDecrypt = new StreamReader(csDecrypt))
{
return srDecrypt.ReadToEnd();
}
}
}
public static void WritePrivateKey(string privateKeyFilePath, string privateKey, string password)
{
var salt = Encoding.UTF8.GetBytes(SymmetricSalt);
using (var cypher = new AesManaged())
{
var pdb = new Rfc2898DeriveBytes(password, salt);
var key = pdb.GetBytes(cypher.KeySize / 8);
var iv = pdb.GetBytes(cypher.BlockSize / 8);
using (var encryptor = cypher.CreateEncryptor(key, iv))
using (var fsEncrypt = new FileStream(privateKeyFilePath, FileMode.Create))
using (var csEncrypt = new CryptoStream(fsEncrypt, encryptor, CryptoStreamMode.Write))
using (var swEncrypt = new StreamWriter(csEncrypt))
{
swEncrypt.Write(privateKey);
}
}
}
#endregion
}
Esempio di utilizzo:
private static void HybridCryptoTest(string privateKeyPath, string privateKeyPassword, string inputPath)
{
// Setup the test
var publicKeyPath = Path.ChangeExtension(privateKeyPath, ".public");
var outputPath = Path.Combine(Path.ChangeExtension(inputPath, ".enc"));
var testPath = Path.Combine(Path.ChangeExtension(inputPath, ".test"));
if (!File.Exists(privateKeyPath))
{
var keys = AsymmetricProvider.GenerateNewKeyPair(2048);
AsymmetricProvider.WritePublicKey(publicKeyPath, keys.PublicKey);
AsymmetricProvider.WritePrivateKey(privateKeyPath, keys.PrivateKey, privateKeyPassword);
}
// Encrypt the file
var publicKey = AsymmetricProvider.ReadPublicKey(publicKeyPath);
AsymmetricProvider.EncryptFile(inputPath, outputPath, publicKey);
// Decrypt it again to compare against the source file
var privateKey = AsymmetricProvider.ReadPrivateKey(privateKeyPath, privateKeyPassword);
AsymmetricProvider.DecryptFile(outputPath, testPath, privateKey);
// Check that the two files match
var source = File.ReadAllBytes(inputPath);
var dest = File.ReadAllBytes(testPath);
if (source.Length != dest.Length)
throw new Exception("Length does not match");
if (source.Where((t, i) => t != dest[i]).Any())
throw new Exception("Data mismatch");
}