C# Language
Kryptografia (System.Security.Cryptography)
Szukaj…
Współczesne przykłady szyfrowania symetrycznego uwierzytelnionego ciągu
Kryptografia jest czymś bardzo trudnym i po spędzeniu dużo czasu na czytaniu różnych przykładów i widzeniu, jak łatwo jest wprowadzić jakąś formę podatności, znalazłem odpowiedź napisaną przez @jbtule, która moim zdaniem jest bardzo dobra. Miłego czytania:
„Ogólna najlepsza praktyka w zakresie szyfrowania symetrycznego polega na użyciu szyfrowania uwierzytelnionego ze skojarzonymi danymi (AEAD), jednak nie jest to część standardowych bibliotek kryptograficznych .net. Tak więc pierwszy przykład wykorzystuje AES256, a następnie HMAC256 , a następnie szyfrowanie dwustopniowe MAC , który wymaga większego obciążenia i większej liczby kluczy.
Drugi przykład wykorzystuje prostszą praktykę AES256- GCM z wykorzystaniem otwartego źródła Bouncy Castle (przez nuget).
Oba przykłady mają główną funkcję, która pobiera tajny ciąg wiadomości, klucz (klucze) oraz opcjonalny nieszyfrowany ładunek i zwrot oraz uwierzytelniony zaszyfrowany ciąg opcjonalnie poprzedzony niejawnymi danymi. Idealnie byłoby użyć ich z 256- NewKey()
wygenerowanymi losowo, patrz NewKey()
.
Oba przykłady mają również metody pomocnicze, które używają hasła ciągu do generowania kluczy. Te metody pomocnicze są zapewniane w celu dopasowania do innych przykładów, jednak są one znacznie mniej bezpieczne, ponieważ siła hasła będzie znacznie słabsza niż klucz 256-bitowy .
Aktualizacja: Dodano przeciążenie byte[]
i tylko Gist ma pełne formatowanie z wcięciem na 4 spacje i dokumenty api z powodu ograniczeń odpowiedzi StackOverflow. "
.NET Built-in Encrypt (AES) -Then-MAC (HMAC) [Gist]
/*
* This work (Modern Encryption of a String C#, by James Tuley),
* identified by James Tuley, is free of known copyright restrictions.
* https://gist.github.com/4336842
* http://creativecommons.org/publicdomain/mark/1.0/
*/
using System;
using System.IO;
using System.Security.Cryptography;
using System.Text;
namespace Encryption
{
public static class AESThenHMAC
{
private static readonly RandomNumberGenerator Random = RandomNumberGenerator.Create();
//Preconfigured Encryption Parameters
public static readonly int BlockBitSize = 128;
public static readonly int KeyBitSize = 256;
//Preconfigured Password Key Derivation Parameters
public static readonly int SaltBitSize = 64;
public static readonly int Iterations = 10000;
public static readonly int MinPasswordLength = 12;
/// <summary>
/// Helper that generates a random key on each call.
/// </summary>
/// <returns></returns>
public static byte[] NewKey()
{
var key = new byte[KeyBitSize / 8];
Random.GetBytes(key);
return key;
}
/// <summary>
/// Simple Encryption (AES) then Authentication (HMAC) for a UTF8 Message.
/// </summary>
/// <param name="secretMessage">The secret message.</param>
/// <param name="cryptKey">The crypt key.</param>
/// <param name="authKey">The auth key.</param>
/// <param name="nonSecretPayload">(Optional) Non-Secret Payload.</param>
/// <returns>
/// Encrypted Message
/// </returns>
/// <exception cref="System.ArgumentException">Secret Message Required!;secretMessage</exception>
/// <remarks>
/// Adds overhead of (Optional-Payload + BlockSize(16) + Message-Padded-To-Blocksize + HMac-Tag(32)) * 1.33 Base64
/// </remarks>
public static string SimpleEncrypt(string secretMessage, byte[] cryptKey, byte[] authKey,
byte[] nonSecretPayload = null)
{
if (string.IsNullOrEmpty(secretMessage))
throw new ArgumentException("Secret Message Required!", "secretMessage");
var plainText = Encoding.UTF8.GetBytes(secretMessage);
var cipherText = SimpleEncrypt(plainText, cryptKey, authKey, nonSecretPayload);
return Convert.ToBase64String(cipherText);
}
/// <summary>
/// Simple Authentication (HMAC) then Decryption (AES) for a secrets UTF8 Message.
/// </summary>
/// <param name="encryptedMessage">The encrypted message.</param>
/// <param name="cryptKey">The crypt key.</param>
/// <param name="authKey">The auth key.</param>
/// <param name="nonSecretPayloadLength">Length of the non secret payload.</param>
/// <returns>
/// Decrypted Message
/// </returns>
/// <exception cref="System.ArgumentException">Encrypted Message Required!;encryptedMessage</exception>
public static string SimpleDecrypt(string encryptedMessage, byte[] cryptKey, byte[] authKey,
int nonSecretPayloadLength = 0)
{
if (string.IsNullOrWhiteSpace(encryptedMessage))
throw new ArgumentException("Encrypted Message Required!", "encryptedMessage");
var cipherText = Convert.FromBase64String(encryptedMessage);
var plainText = SimpleDecrypt(cipherText, cryptKey, authKey, nonSecretPayloadLength);
return plainText == null ? null : Encoding.UTF8.GetString(plainText);
}
/// <summary>
/// Simple Encryption (AES) then Authentication (HMAC) of a UTF8 message
/// using Keys derived from a Password (PBKDF2).
/// </summary>
/// <param name="secretMessage">The secret message.</param>
/// <param name="password">The password.</param>
/// <param name="nonSecretPayload">The non secret payload.</param>
/// <returns>
/// Encrypted Message
/// </returns>
/// <exception cref="System.ArgumentException">password</exception>
/// <remarks>
/// Significantly less secure than using random binary keys.
/// Adds additional non secret payload for key generation parameters.
/// </remarks>
public static string SimpleEncryptWithPassword(string secretMessage, string password,
byte[] nonSecretPayload = null)
{
if (string.IsNullOrEmpty(secretMessage))
throw new ArgumentException("Secret Message Required!", "secretMessage");
var plainText = Encoding.UTF8.GetBytes(secretMessage);
var cipherText = SimpleEncryptWithPassword(plainText, password, nonSecretPayload);
return Convert.ToBase64String(cipherText);
}
/// <summary>
/// Simple Authentication (HMAC) and then Descryption (AES) of a UTF8 Message
/// using keys derived from a password (PBKDF2).
/// </summary>
/// <param name="encryptedMessage">The encrypted message.</param>
/// <param name="password">The password.</param>
/// <param name="nonSecretPayloadLength">Length of the non secret payload.</param>
/// <returns>
/// Decrypted Message
/// </returns>
/// <exception cref="System.ArgumentException">Encrypted Message Required!;encryptedMessage</exception>
/// <remarks>
/// Significantly less secure than using random binary keys.
/// </remarks>
public static string SimpleDecryptWithPassword(string encryptedMessage, string password,
int nonSecretPayloadLength = 0)
{
if (string.IsNullOrWhiteSpace(encryptedMessage))
throw new ArgumentException("Encrypted Message Required!", "encryptedMessage");
var cipherText = Convert.FromBase64String(encryptedMessage);
var plainText = SimpleDecryptWithPassword(cipherText, password, nonSecretPayloadLength);
return plainText == null ? null : Encoding.UTF8.GetString(plainText);
}
public static byte[] SimpleEncrypt(byte[] secretMessage, byte[] cryptKey, byte[] authKey, byte[] nonSecretPayload = null)
{
//User Error Checks
if (cryptKey == null || cryptKey.Length != KeyBitSize / 8)
throw new ArgumentException(String.Format("Key needs to be {0} bit!", KeyBitSize), "cryptKey");
if (authKey == null || authKey.Length != KeyBitSize / 8)
throw new ArgumentException(String.Format("Key needs to be {0} bit!", KeyBitSize), "authKey");
if (secretMessage == null || secretMessage.Length < 1)
throw new ArgumentException("Secret Message Required!", "secretMessage");
//non-secret payload optional
nonSecretPayload = nonSecretPayload ?? new byte[] { };
byte[] cipherText;
byte[] iv;
using (var aes = new AesManaged
{
KeySize = KeyBitSize,
BlockSize = BlockBitSize,
Mode = CipherMode.CBC,
Padding = PaddingMode.PKCS7
})
{
//Use random IV
aes.GenerateIV();
iv = aes.IV;
using (var encrypter = aes.CreateEncryptor(cryptKey, iv))
using (var cipherStream = new MemoryStream())
{
using (var cryptoStream = new CryptoStream(cipherStream, encrypter, CryptoStreamMode.Write))
using (var binaryWriter = new BinaryWriter(cryptoStream))
{
//Encrypt Data
binaryWriter.Write(secretMessage);
}
cipherText = cipherStream.ToArray();
}
}
//Assemble encrypted message and add authentication
using (var hmac = new HMACSHA256(authKey))
using (var encryptedStream = new MemoryStream())
{
using (var binaryWriter = new BinaryWriter(encryptedStream))
{
//Prepend non-secret payload if any
binaryWriter.Write(nonSecretPayload);
//Prepend IV
binaryWriter.Write(iv);
//Write Ciphertext
binaryWriter.Write(cipherText);
binaryWriter.Flush();
//Authenticate all data
var tag = hmac.ComputeHash(encryptedStream.ToArray());
//Postpend tag
binaryWriter.Write(tag);
}
return encryptedStream.ToArray();
}
}
public static byte[] SimpleDecrypt(byte[] encryptedMessage, byte[] cryptKey, byte[] authKey, int nonSecretPayloadLength = 0)
{
//Basic Usage Error Checks
if (cryptKey == null || cryptKey.Length != KeyBitSize / 8)
throw new ArgumentException(String.Format("CryptKey needs to be {0} bit!", KeyBitSize), "cryptKey");
if (authKey == null || authKey.Length != KeyBitSize / 8)
throw new ArgumentException(String.Format("AuthKey needs to be {0} bit!", KeyBitSize), "authKey");
if (encryptedMessage == null || encryptedMessage.Length == 0)
throw new ArgumentException("Encrypted Message Required!", "encryptedMessage");
using (var hmac = new HMACSHA256(authKey))
{
var sentTag = new byte[hmac.HashSize / 8];
//Calculate Tag
var calcTag = hmac.ComputeHash(encryptedMessage, 0, encryptedMessage.Length - sentTag.Length);
var ivLength = (BlockBitSize / 8);
//if message length is to small just return null
if (encryptedMessage.Length < sentTag.Length + nonSecretPayloadLength + ivLength)
return null;
//Grab Sent Tag
Array.Copy(encryptedMessage, encryptedMessage.Length - sentTag.Length, sentTag, 0, sentTag.Length);
//Compare Tag with constant time comparison
var compare = 0;
for (var i = 0; i < sentTag.Length; i++)
compare |= sentTag[i] ^ calcTag[i];
//if message doesn't authenticate return null
if (compare != 0)
return null;
using (var aes = new AesManaged
{
KeySize = KeyBitSize,
BlockSize = BlockBitSize,
Mode = CipherMode.CBC,
Padding = PaddingMode.PKCS7
})
{
//Grab IV from message
var iv = new byte[ivLength];
Array.Copy(encryptedMessage, nonSecretPayloadLength, iv, 0, iv.Length);
using (var decrypter = aes.CreateDecryptor(cryptKey, iv))
using (var plainTextStream = new MemoryStream())
{
using (var decrypterStream = new CryptoStream(plainTextStream, decrypter, CryptoStreamMode.Write))
using (var binaryWriter = new BinaryWriter(decrypterStream))
{
//Decrypt Cipher Text from Message
binaryWriter.Write(
encryptedMessage,
nonSecretPayloadLength + iv.Length,
encryptedMessage.Length - nonSecretPayloadLength - iv.Length - sentTag.Length
);
}
//Return Plain Text
return plainTextStream.ToArray();
}
}
}
}
public static byte[] SimpleEncryptWithPassword(byte[] secretMessage, string password, byte[] nonSecretPayload = null)
{
nonSecretPayload = nonSecretPayload ?? new byte[] {};
//User Error Checks
if (string.IsNullOrWhiteSpace(password) || password.Length < MinPasswordLength)
throw new ArgumentException(String.Format("Must have a password of at least {0} characters!", MinPasswordLength), "password");
if (secretMessage == null || secretMessage.Length ==0)
throw new ArgumentException("Secret Message Required!", "secretMessage");
var payload = new byte[((SaltBitSize / 8) * 2) + nonSecretPayload.Length];
Array.Copy(nonSecretPayload, payload, nonSecretPayload.Length);
int payloadIndex = nonSecretPayload.Length;
byte[] cryptKey;
byte[] authKey;
//Use Random Salt to prevent pre-generated weak password attacks.
using (var generator = new Rfc2898DeriveBytes(password, SaltBitSize / 8, Iterations))
{
var salt = generator.Salt;
//Generate Keys
cryptKey = generator.GetBytes(KeyBitSize / 8);
//Create Non Secret Payload
Array.Copy(salt, 0, payload, payloadIndex, salt.Length);
payloadIndex += salt.Length;
}
//Deriving separate key, might be less efficient than using HKDF,
//but now compatible with RNEncryptor which had a very similar wireformat and requires less code than HKDF.
using (var generator = new Rfc2898DeriveBytes(password, SaltBitSize / 8, Iterations))
{
var salt = generator.Salt;
//Generate Keys
authKey = generator.GetBytes(KeyBitSize / 8);
//Create Rest of Non Secret Payload
Array.Copy(salt, 0, payload, payloadIndex, salt.Length);
}
return SimpleEncrypt(secretMessage, cryptKey, authKey, payload);
}
public static byte[] SimpleDecryptWithPassword(byte[] encryptedMessage, string password, int nonSecretPayloadLength = 0)
{
//User Error Checks
if (string.IsNullOrWhiteSpace(password) || password.Length < MinPasswordLength)
throw new ArgumentException(String.Format("Must have a password of at least {0} characters!", MinPasswordLength), "password");
if (encryptedMessage == null || encryptedMessage.Length == 0)
throw new ArgumentException("Encrypted Message Required!", "encryptedMessage");
var cryptSalt = new byte[SaltBitSize / 8];
var authSalt = new byte[SaltBitSize / 8];
//Grab Salt from Non-Secret Payload
Array.Copy(encryptedMessage, nonSecretPayloadLength, cryptSalt, 0, cryptSalt.Length);
Array.Copy(encryptedMessage, nonSecretPayloadLength + cryptSalt.Length, authSalt, 0, authSalt.Length);
byte[] cryptKey;
byte[] authKey;
//Generate crypt key
using (var generator = new Rfc2898DeriveBytes(password, cryptSalt, Iterations))
{
cryptKey = generator.GetBytes(KeyBitSize / 8);
}
//Generate auth key
using (var generator = new Rfc2898DeriveBytes(password, authSalt, Iterations))
{
authKey = generator.GetBytes(KeyBitSize / 8);
}
return SimpleDecrypt(encryptedMessage, cryptKey, authKey, cryptSalt.Length + authSalt.Length + nonSecretPayloadLength);
}
}
}
Nadmuchiwany zamek AES-GCM [Gist]
/*
* This work (Modern Encryption of a String C#, by James Tuley),
* identified by James Tuley, is free of known copyright restrictions.
* https://gist.github.com/4336842
* http://creativecommons.org/publicdomain/mark/1.0/
*/
using System;
using System.IO;
using System.Text;
using Org.BouncyCastle.Crypto;
using Org.BouncyCastle.Crypto.Engines;
using Org.BouncyCastle.Crypto.Generators;
using Org.BouncyCastle.Crypto.Modes;
using Org.BouncyCastle.Crypto.Parameters;
using Org.BouncyCastle.Security;
namespace Encryption
{
public static class AESGCM
{
private static readonly SecureRandom Random = new SecureRandom();
//Preconfigured Encryption Parameters
public static readonly int NonceBitSize = 128;
public static readonly int MacBitSize = 128;
public static readonly int KeyBitSize = 256;
//Preconfigured Password Key Derivation Parameters
public static readonly int SaltBitSize = 128;
public static readonly int Iterations = 10000;
public static readonly int MinPasswordLength = 12;
/// <summary>
/// Helper that generates a random new key on each call.
/// </summary>
/// <returns></returns>
public static byte[] NewKey()
{
var key = new byte[KeyBitSize / 8];
Random.NextBytes(key);
return key;
}
/// <summary>
/// Simple Encryption And Authentication (AES-GCM) of a UTF8 string.
/// </summary>
/// <param name="secretMessage">The secret message.</param>
/// <param name="key">The key.</param>
/// <param name="nonSecretPayload">Optional non-secret payload.</param>
/// <returns>
/// Encrypted Message
/// </returns>
/// <exception cref="System.ArgumentException">Secret Message Required!;secretMessage</exception>
/// <remarks>
/// Adds overhead of (Optional-Payload + BlockSize(16) + Message + HMac-Tag(16)) * 1.33 Base64
/// </remarks>
public static string SimpleEncrypt(string secretMessage, byte[] key, byte[] nonSecretPayload = null)
{
if (string.IsNullOrEmpty(secretMessage))
throw new ArgumentException("Secret Message Required!", "secretMessage");
var plainText = Encoding.UTF8.GetBytes(secretMessage);
var cipherText = SimpleEncrypt(plainText, key, nonSecretPayload);
return Convert.ToBase64String(cipherText);
}
/// <summary>
/// Simple Decryption & Authentication (AES-GCM) of a UTF8 Message
/// </summary>
/// <param name="encryptedMessage">The encrypted message.</param>
/// <param name="key">The key.</param>
/// <param name="nonSecretPayloadLength">Length of the optional non-secret payload.</param>
/// <returns>Decrypted Message</returns>
public static string SimpleDecrypt(string encryptedMessage, byte[] key, int nonSecretPayloadLength = 0)
{
if (string.IsNullOrEmpty(encryptedMessage))
throw new ArgumentException("Encrypted Message Required!", "encryptedMessage");
var cipherText = Convert.FromBase64String(encryptedMessage);
var plainText = SimpleDecrypt(cipherText, key, nonSecretPayloadLength);
return plainText == null ? null : Encoding.UTF8.GetString(plainText);
}
/// <summary>
/// Simple Encryption And Authentication (AES-GCM) of a UTF8 String
/// using key derived from a password (PBKDF2).
/// </summary>
/// <param name="secretMessage">The secret message.</param>
/// <param name="password">The password.</param>
/// <param name="nonSecretPayload">The non secret payload.</param>
/// <returns>
/// Encrypted Message
/// </returns>
/// <remarks>
/// Significantly less secure than using random binary keys.
/// Adds additional non secret payload for key generation parameters.
/// </remarks>
public static string SimpleEncryptWithPassword(string secretMessage, string password,
byte[] nonSecretPayload = null)
{
if (string.IsNullOrEmpty(secretMessage))
throw new ArgumentException("Secret Message Required!", "secretMessage");
var plainText = Encoding.UTF8.GetBytes(secretMessage);
var cipherText = SimpleEncryptWithPassword(plainText, password, nonSecretPayload);
return Convert.ToBase64String(cipherText);
}
/// <summary>
/// Simple Decryption and Authentication (AES-GCM) of a UTF8 message
/// using a key derived from a password (PBKDF2)
/// </summary>
/// <param name="encryptedMessage">The encrypted message.</param>
/// <param name="password">The password.</param>
/// <param name="nonSecretPayloadLength">Length of the non secret payload.</param>
/// <returns>
/// Decrypted Message
/// </returns>
/// <exception cref="System.ArgumentException">Encrypted Message Required!;encryptedMessage</exception>
/// <remarks>
/// Significantly less secure than using random binary keys.
/// </remarks>
public static string SimpleDecryptWithPassword(string encryptedMessage, string password,
int nonSecretPayloadLength = 0)
{
if (string.IsNullOrWhiteSpace(encryptedMessage))
throw new ArgumentException("Encrypted Message Required!", "encryptedMessage");
var cipherText = Convert.FromBase64String(encryptedMessage);
var plainText = SimpleDecryptWithPassword(cipherText, password, nonSecretPayloadLength);
return plainText == null ? null : Encoding.UTF8.GetString(plainText);
}
public static byte[] SimpleEncrypt(byte[] secretMessage, byte[] key, byte[] nonSecretPayload = null)
{
//User Error Checks
if (key == null || key.Length != KeyBitSize / 8)
throw new ArgumentException(String.Format("Key needs to be {0} bit!", KeyBitSize), "key");
if (secretMessage == null || secretMessage.Length == 0)
throw new ArgumentException("Secret Message Required!", "secretMessage");
//Non-secret Payload Optional
nonSecretPayload = nonSecretPayload ?? new byte[] { };
//Using random nonce large enough not to repeat
var nonce = new byte[NonceBitSize / 8];
Random.NextBytes(nonce, 0, nonce.Length);
var cipher = new GcmBlockCipher(new AesFastEngine());
var parameters = new AeadParameters(new KeyParameter(key), MacBitSize, nonce, nonSecretPayload);
cipher.Init(true, parameters);
//Generate Cipher Text With Auth Tag
var cipherText = new byte[cipher.GetOutputSize(secretMessage.Length)];
var len = cipher.ProcessBytes(secretMessage, 0, secretMessage.Length, cipherText, 0);
cipher.DoFinal(cipherText, len);
//Assemble Message
using (var combinedStream = new MemoryStream())
{
using (var binaryWriter = new BinaryWriter(combinedStream))
{
//Prepend Authenticated Payload
binaryWriter.Write(nonSecretPayload);
//Prepend Nonce
binaryWriter.Write(nonce);
//Write Cipher Text
binaryWriter.Write(cipherText);
}
return combinedStream.ToArray();
}
}
public static byte[] SimpleDecrypt(byte[] encryptedMessage, byte[] key, int nonSecretPayloadLength = 0)
{
//User Error Checks
if (key == null || key.Length != KeyBitSize / 8)
throw new ArgumentException(String.Format("Key needs to be {0} bit!", KeyBitSize), "key");
if (encryptedMessage == null || encryptedMessage.Length == 0)
throw new ArgumentException("Encrypted Message Required!", "encryptedMessage");
using (var cipherStream = new MemoryStream(encryptedMessage))
using (var cipherReader = new BinaryReader(cipherStream))
{
//Grab Payload
var nonSecretPayload = cipherReader.ReadBytes(nonSecretPayloadLength);
//Grab Nonce
var nonce = cipherReader.ReadBytes(NonceBitSize / 8);
var cipher = new GcmBlockCipher(new AesFastEngine());
var parameters = new AeadParameters(new KeyParameter(key), MacBitSize, nonce, nonSecretPayload);
cipher.Init(false, parameters);
//Decrypt Cipher Text
var cipherText = cipherReader.ReadBytes(encryptedMessage.Length - nonSecretPayloadLength - nonce.Length);
var plainText = new byte[cipher.GetOutputSize(cipherText.Length)];
try
{
var len = cipher.ProcessBytes(cipherText, 0, cipherText.Length, plainText, 0);
cipher.DoFinal(plainText, len);
}
catch (InvalidCipherTextException)
{
//Return null if it doesn't authenticate
return null;
}
return plainText;
}
}
public static byte[] SimpleEncryptWithPassword(byte[] secretMessage, string password, byte[] nonSecretPayload = null)
{
nonSecretPayload = nonSecretPayload ?? new byte[] {};
//User Error Checks
if (string.IsNullOrWhiteSpace(password) || password.Length < MinPasswordLength)
throw new ArgumentException(String.Format("Must have a password of at least {0} characters!", MinPasswordLength), "password");
if (secretMessage == null || secretMessage.Length == 0)
throw new ArgumentException("Secret Message Required!", "secretMessage");
var generator = new Pkcs5S2ParametersGenerator();
//Use Random Salt to minimize pre-generated weak password attacks.
var salt = new byte[SaltBitSize / 8];
Random.NextBytes(salt);
generator.Init(
PbeParametersGenerator.Pkcs5PasswordToBytes(password.ToCharArray()),
salt,
Iterations);
//Generate Key
var key = (KeyParameter)generator.GenerateDerivedMacParameters(KeyBitSize);
//Create Full Non Secret Payload
var payload = new byte[salt.Length + nonSecretPayload.Length];
Array.Copy(nonSecretPayload, payload, nonSecretPayload.Length);
Array.Copy(salt,0, payload,nonSecretPayload.Length, salt.Length);
return SimpleEncrypt(secretMessage, key.GetKey(), payload);
}
public static byte[] SimpleDecryptWithPassword(byte[] encryptedMessage, string password, int nonSecretPayloadLength = 0)
{
//User Error Checks
if (string.IsNullOrWhiteSpace(password) || password.Length < MinPasswordLength)
throw new ArgumentException(String.Format("Must have a password of at least {0} characters!", MinPasswordLength), "password");
if (encryptedMessage == null || encryptedMessage.Length == 0)
throw new ArgumentException("Encrypted Message Required!", "encryptedMessage");
var generator = new Pkcs5S2ParametersGenerator();
//Grab Salt from Payload
var salt = new byte[SaltBitSize / 8];
Array.Copy(encryptedMessage, nonSecretPayloadLength, salt, 0, salt.Length);
generator.Init(
PbeParametersGenerator.Pkcs5PasswordToBytes(password.ToCharArray()),
salt,
Iterations);
//Generate Key
var key = (KeyParameter)generator.GenerateDerivedMacParameters(KeyBitSize);
return SimpleDecrypt(encryptedMessage, key.GetKey(), salt.Length + nonSecretPayloadLength);
}
}
}
Wprowadzenie do szyfrowania symetrycznego i asymetrycznego
Możesz poprawić bezpieczeństwo przesyłania lub przechowywania danych, wdrażając techniki szyfrowania. Zasadniczo istnieją dwa podejścia przy użyciu System.Security.Cryptography : symetryczny i asymetryczny.
Szyfrowanie symetryczne
Ta metoda wykorzystuje klucz prywatny w celu przeprowadzenia transformacji danych.
Plusy:
- Algorytmy symetryczne zużywają mniej zasobów i są szybsze niż algorytmy asymetryczne.
- Ilość danych, które możesz zaszyfrować, jest nieograniczona.
Cons:
- Szyfrowanie i deszyfrowanie używają tego samego klucza. Ktoś będzie w stanie odszyfrować twoje dane, jeśli klucz zostanie naruszony.
- Możesz skończyć z wieloma różnymi tajnymi kluczami do zarządzania, jeśli wybierzesz inny tajny klucz dla różnych danych.
W System.Security.Cryptography masz różne klasy, które wykonują szyfrowanie symetryczne, są one znane jako szyfry blokowe :
- AesManaged (algorytm AES ).
- AesCryptoServiceProvider (algorytm AES , skarga FIPS 140-2 ).
- DESCryptoServiceProvider (algorytm DES ).
- RC2CryptoServiceProvider (algorytm Rivest Cipher 2 ).
- RijndaelManaged (algorytm AES ). Uwaga : RijndaelManaged nie jest skargą FIPS-197 .
- TripleDES (algorytm TripleDES ).
Szyfrowanie asymetryczne
Ta metoda wykorzystuje kombinację klucza publicznego i prywatnego w celu przeprowadzenia transformacji danych.
Plusy:
- Wykorzystuje większe klucze niż algorytmy symetryczne, dlatego są mniej podatne na pękanie przy użyciu brutalnej siły.
- Łatwiej jest zagwarantować, kto jest w stanie zaszyfrować i odszyfrować dane, ponieważ opiera się na dwóch kluczach (publicznym i prywatnym).
Cons:
- Istnieje limit ilości danych, które można zaszyfrować. Limit jest różny dla każdego algorytmu i zwykle jest proporcjonalny do wielkości klucza algorytmu. Na przykład obiekt RSACryptoServiceProvider o długości klucza 1024 bity może szyfrować tylko wiadomość o długości mniejszej niż 128 bajtów.
- Algorytmy asymetryczne są bardzo wolne w porównaniu do algorytmów symetrycznych.
W System.Security.Cryptography masz dostęp do różnych klas, które wykonują szyfrowanie asymetryczne:
- DSACryptoServiceProvider ( algorytm algorytmu podpisu cyfrowego )
- RSACryptoServiceProvider ( algorytm algorytmu RSA )
Hashowanie hasła
Hasła nigdy nie powinny być przechowywane jako zwykły tekst! Powinny być one mieszane losowo generowaną solą (w celu obrony przed atakami tabeli tęczy) przy użyciu algorytmu powolnego mieszania hasła. Duża liczba iteracji (> 10k) może być wykorzystana do spowolnienia ataków siłowych. Opóźnienie ~ 100 ms jest dopuszczalne dla zalogowanego użytkownika, ale utrudnia złamanie długiego hasła. Wybierając liczbę iteracji, powinieneś użyć maksymalnej dopuszczalnej wartości dla swojej aplikacji i zwiększać ją wraz z poprawą wydajności komputera. Będziesz także musiał rozważyć zatrzymanie powtarzających się żądań, które mogłyby zostać wykorzystane jako atak DoS.
Gdy haszowanie po raz pierwszy można wygenerować dla ciebie sól, powstały hash i sól można następnie zapisać w pliku.
private void firstHash(string userName, string userPassword, int numberOfItterations)
{
Rfc2898DeriveBytes PBKDF2 = new Rfc2898DeriveBytes(userPassword, 8, numberOfItterations); //Hash the password with a 8 byte salt
byte[] hashedPassword = PBKDF2.GetBytes(20); //Returns a 20 byte hash
byte[] salt = PBKDF2.Salt;
writeHashToFile(userName, hashedPassword, salt, numberOfItterations); //Store the hashed password with the salt and number of itterations to check against future password entries
}
Sprawdzając istniejące hasło użytkownika, przeczytaj jego skrót i sól z pliku i porównaj z skrótem wprowadzonego hasła
private bool checkPassword(string userName, string userPassword, int numberOfItterations)
{
byte[] usersHash = getUserHashFromFile(userName);
byte[] userSalt = getUserSaltFromFile(userName);
Rfc2898DeriveBytes PBKDF2 = new Rfc2898DeriveBytes(userPassword, userSalt, numberOfItterations); //Hash the password with the users salt
byte[] hashedPassword = PBKDF2.GetBytes(20); //Returns a 20 byte hash
bool passwordsMach = comparePasswords(usersHash, hashedPassword); //Compares byte arrays
return passwordsMach;
}
Proste symetryczne szyfrowanie plików
Poniższy przykładowy kod pokazuje szybki i łatwy sposób szyfrowania i deszyfrowania plików przy użyciu algorytmu szyfrowania symetrycznego AES.
Kod losowo generuje Wektory Soli i Inicjalizacji za każdym razem, gdy plik jest szyfrowany, co oznacza, że zaszyfrowanie tego samego pliku przy użyciu tego samego hasła zawsze prowadzi do różnych wyników. Sól i IV są zapisywane w pliku wyjściowym, więc do jego odszyfrowania wymagane jest tylko hasło.
public static void ProcessFile(string inputPath, string password, bool encryptMode, string outputPath)
{
using (var cypher = new AesManaged())
using (var fsIn = new FileStream(inputPath, FileMode.Open))
using (var fsOut = new FileStream(outputPath, FileMode.Create))
{
const int saltLength = 256;
var salt = new byte[saltLength];
var iv = new byte[cypher.BlockSize / 8];
if (encryptMode)
{
// Generate random salt and IV, then write them to file
using (var rng = new RNGCryptoServiceProvider())
{
rng.GetBytes(salt);
rng.GetBytes(iv);
}
fsOut.Write(salt, 0, salt.Length);
fsOut.Write(iv, 0, iv.Length);
}
else
{
// Read the salt and IV from the file
fsIn.Read(salt, 0, saltLength);
fsIn.Read(iv, 0, iv.Length);
}
// Generate a secure password, based on the password and salt provided
var pdb = new Rfc2898DeriveBytes(password, salt);
var key = pdb.GetBytes(cypher.KeySize / 8);
// Encrypt or decrypt the file
using (var cryptoTransform = encryptMode
? cypher.CreateEncryptor(key, iv)
: cypher.CreateDecryptor(key, iv))
using (var cs = new CryptoStream(fsOut, cryptoTransform, CryptoStreamMode.Write))
{
fsIn.CopyTo(cs);
}
}
}
Kryptograficznie bezpieczne losowe dane
Są chwile, kiedy klasa Random () frameworka może nie być uważana za wystarczająco losową, biorąc pod uwagę, że jest oparta na generatorze liczb losowych psuedo-losowych. Klasy Crypto frameworka zapewniają jednak coś bardziej niezawodnego w postaci RNGCryptoServiceProvider.
Poniższe przykłady kodu pokazują, jak generować kryptograficznie bezpieczne tablice bajtów, ciągi i liczby.
Tablica losowych bajtów
public static byte[] GenerateRandomData(int length)
{
var rnd = new byte[length];
using (var rng = new RNGCryptoServiceProvider())
rng.GetBytes(rnd);
return rnd;
}
Losowa liczba całkowita (z równomiernym rozkładem)
public static int GenerateRandomInt(int minVal=0, int maxVal=100)
{
var rnd = new byte[4];
using (var rng = new RNGCryptoServiceProvider())
rng.GetBytes(rnd);
var i = Math.Abs(BitConverter.ToInt32(rnd, 0));
return Convert.ToInt32(i % (maxVal - minVal + 1) + minVal);
}
Losowy ciąg
public static string GenerateRandomString(int length, string allowableChars=null)
{
if (string.IsNullOrEmpty(allowableChars))
allowableChars = @"ABCDEFGHIJKLMNOPQRSTUVWXYZ";
// Generate random data
var rnd = new byte[length];
using (var rng = new RNGCryptoServiceProvider())
rng.GetBytes(rnd);
// Generate the output string
var allowable = allowableChars.ToCharArray();
var l = allowable.Length;
var chars = new char[length];
for (var i = 0; i < length; i++)
chars[i] = allowable[rnd[i] % l];
return new string(chars);
}
Szybkie, asymetryczne szyfrowanie plików
Szyfrowanie asymetryczne jest często uważane za lepsze niż szyfrowanie symetryczne do przesyłania wiadomości do innych podmiotów. Wynika to głównie z faktu, że eliminuje wiele zagrożeń związanych z wymianą klucza wspólnego i zapewnia, że chociaż każdy posiadający klucz publiczny może zaszyfrować wiadomość dla docelowego odbiorcy, tylko ten odbiorca może ją odszyfrować. Niestety główną wadą asymetrycznych algorytmów szyfrowania jest to, że są one znacznie wolniejsze niż ich symetryczni kuzyni. W związku z tym asymetryczne szyfrowanie plików, szczególnie dużych, może często być bardzo intensywnym obliczeniowo procesem.
Aby zapewnić zarówno bezpieczeństwo ORAZ wydajność, można zastosować podejście hybrydowe. To pociąga za sobą kryptograficznie losowe generowanie klucza i wektora inicjującego dla szyfrowania symetrycznego . Wartości te są następnie szyfrowane przy użyciu algorytmu asymetrycznego i zapisywane w pliku wyjściowym, zanim zostaną użyte do szyfrowania danych źródłowych symetrycznie i dołączenia ich do danych wyjściowych.
Takie podejście zapewnia wysoki stopień wydajności i bezpieczeństwa, ponieważ dane są szyfrowane przy użyciu algorytmu symetrycznego (szybki), a klucz i iv, oba losowo generowane (bezpieczne) są szyfrowane za pomocą algorytmu asymetrycznego (bezpieczne). Ma również tę dodatkową zaletę, że ten sam ładunek szyfrowany przy różnych okazjach będzie miał bardzo różny szyfrogram, ponieważ klucze symetryczne są generowane losowo za każdym razem.
Poniższa klasa demonstruje asymetryczne szyfrowanie ciągów i tablic bajtów, a także hybrydowe szyfrowanie plików.
public static class AsymmetricProvider
{
#region Key Generation
public class KeyPair
{
public string PublicKey { get; set; }
public string PrivateKey { get; set; }
}
public static KeyPair GenerateNewKeyPair(int keySize = 4096)
{
// KeySize is measured in bits. 1024 is the default, 2048 is better, 4096 is more robust but takes a fair bit longer to generate.
using (var rsa = new RSACryptoServiceProvider(keySize))
{
return new KeyPair {PublicKey = rsa.ToXmlString(false), PrivateKey = rsa.ToXmlString(true)};
}
}
#endregion
#region Asymmetric Data Encryption and Decryption
public static byte[] EncryptData(byte[] data, string publicKey)
{
using (var asymmetricProvider = new RSACryptoServiceProvider())
{
asymmetricProvider.FromXmlString(publicKey);
return asymmetricProvider.Encrypt(data, true);
}
}
public static byte[] DecryptData(byte[] data, string publicKey)
{
using (var asymmetricProvider = new RSACryptoServiceProvider())
{
asymmetricProvider.FromXmlString(publicKey);
if (asymmetricProvider.PublicOnly)
throw new Exception("The key provided is a public key and does not contain the private key elements required for decryption");
return asymmetricProvider.Decrypt(data, true);
}
}
public static string EncryptString(string value, string publicKey)
{
return Convert.ToBase64String(EncryptData(Encoding.UTF8.GetBytes(value), publicKey));
}
public static string DecryptString(string value, string privateKey)
{
return Encoding.UTF8.GetString(EncryptData(Convert.FromBase64String(value), privateKey));
}
#endregion
#region Hybrid File Encryption and Decription
public static void EncryptFile(string inputFilePath, string outputFilePath, string publicKey)
{
using (var symmetricCypher = new AesManaged())
{
// Generate random key and IV for symmetric encryption
var key = new byte[symmetricCypher.KeySize / 8];
var iv = new byte[symmetricCypher.BlockSize / 8];
using (var rng = new RNGCryptoServiceProvider())
{
rng.GetBytes(key);
rng.GetBytes(iv);
}
// Encrypt the symmetric key and IV
var buf = new byte[key.Length + iv.Length];
Array.Copy(key, buf, key.Length);
Array.Copy(iv, 0, buf, key.Length, iv.Length);
buf = EncryptData(buf, publicKey);
var bufLen = BitConverter.GetBytes(buf.Length);
// Symmetrically encrypt the data and write it to the file, along with the encrypted key and iv
using (var cypherKey = symmetricCypher.CreateEncryptor(key, iv))
using (var fsIn = new FileStream(inputFilePath, FileMode.Open))
using (var fsOut = new FileStream(outputFilePath, FileMode.Create))
using (var cs = new CryptoStream(fsOut, cypherKey, CryptoStreamMode.Write))
{
fsOut.Write(bufLen,0, bufLen.Length);
fsOut.Write(buf, 0, buf.Length);
fsIn.CopyTo(cs);
}
}
}
public static void DecryptFile(string inputFilePath, string outputFilePath, string privateKey)
{
using (var symmetricCypher = new AesManaged())
using (var fsIn = new FileStream(inputFilePath, FileMode.Open))
{
// Determine the length of the encrypted key and IV
var buf = new byte[sizeof(int)];
fsIn.Read(buf, 0, buf.Length);
var bufLen = BitConverter.ToInt32(buf, 0);
// Read the encrypted key and IV data from the file and decrypt using the asymmetric algorithm
buf = new byte[bufLen];
fsIn.Read(buf, 0, buf.Length);
buf = DecryptData(buf, privateKey);
var key = new byte[symmetricCypher.KeySize / 8];
var iv = new byte[symmetricCypher.BlockSize / 8];
Array.Copy(buf, key, key.Length);
Array.Copy(buf, key.Length, iv, 0, iv.Length);
// Decript the file data using the symmetric algorithm
using (var cypherKey = symmetricCypher.CreateDecryptor(key, iv))
using (var fsOut = new FileStream(outputFilePath, FileMode.Create))
using (var cs = new CryptoStream(fsOut, cypherKey, CryptoStreamMode.Write))
{
fsIn.CopyTo(cs);
}
}
}
#endregion
#region Key Storage
public static void WritePublicKey(string publicKeyFilePath, string publicKey)
{
File.WriteAllText(publicKeyFilePath, publicKey);
}
public static string ReadPublicKey(string publicKeyFilePath)
{
return File.ReadAllText(publicKeyFilePath);
}
private const string SymmetricSalt = "Stack_Overflow!"; // Change me!
public static string ReadPrivateKey(string privateKeyFilePath, string password)
{
var salt = Encoding.UTF8.GetBytes(SymmetricSalt);
var cypherText = File.ReadAllBytes(privateKeyFilePath);
using (var cypher = new AesManaged())
{
var pdb = new Rfc2898DeriveBytes(password, salt);
var key = pdb.GetBytes(cypher.KeySize / 8);
var iv = pdb.GetBytes(cypher.BlockSize / 8);
using (var decryptor = cypher.CreateDecryptor(key, iv))
using (var msDecrypt = new MemoryStream(cypherText))
using (var csDecrypt = new CryptoStream(msDecrypt, decryptor, CryptoStreamMode.Read))
using (var srDecrypt = new StreamReader(csDecrypt))
{
return srDecrypt.ReadToEnd();
}
}
}
public static void WritePrivateKey(string privateKeyFilePath, string privateKey, string password)
{
var salt = Encoding.UTF8.GetBytes(SymmetricSalt);
using (var cypher = new AesManaged())
{
var pdb = new Rfc2898DeriveBytes(password, salt);
var key = pdb.GetBytes(cypher.KeySize / 8);
var iv = pdb.GetBytes(cypher.BlockSize / 8);
using (var encryptor = cypher.CreateEncryptor(key, iv))
using (var fsEncrypt = new FileStream(privateKeyFilePath, FileMode.Create))
using (var csEncrypt = new CryptoStream(fsEncrypt, encryptor, CryptoStreamMode.Write))
using (var swEncrypt = new StreamWriter(csEncrypt))
{
swEncrypt.Write(privateKey);
}
}
}
#endregion
}
Przykład zastosowania:
private static void HybridCryptoTest(string privateKeyPath, string privateKeyPassword, string inputPath)
{
// Setup the test
var publicKeyPath = Path.ChangeExtension(privateKeyPath, ".public");
var outputPath = Path.Combine(Path.ChangeExtension(inputPath, ".enc"));
var testPath = Path.Combine(Path.ChangeExtension(inputPath, ".test"));
if (!File.Exists(privateKeyPath))
{
var keys = AsymmetricProvider.GenerateNewKeyPair(2048);
AsymmetricProvider.WritePublicKey(publicKeyPath, keys.PublicKey);
AsymmetricProvider.WritePrivateKey(privateKeyPath, keys.PrivateKey, privateKeyPassword);
}
// Encrypt the file
var publicKey = AsymmetricProvider.ReadPublicKey(publicKeyPath);
AsymmetricProvider.EncryptFile(inputPath, outputPath, publicKey);
// Decrypt it again to compare against the source file
var privateKey = AsymmetricProvider.ReadPrivateKey(privateKeyPath, privateKeyPassword);
AsymmetricProvider.DecryptFile(outputPath, testPath, privateKey);
// Check that the two files match
var source = File.ReadAllBytes(inputPath);
var dest = File.ReadAllBytes(testPath);
if (source.Length != dest.Length)
throw new Exception("Length does not match");
if (source.Where((t, i) => t != dest[i]).Any())
throw new Exception("Data mismatch");
}