Szukaj…


Uwagi

dplyr to iteracja plyr, która zapewnia elastyczne funkcje oparte na czasownikach do manipulowania danymi w R. Najnowszą wersję dplyr można pobrać z CRAN przy użyciu

install.package("dplyr")

Kluczowym obiektem w dplyr jest tbl, reprezentacja tabelarycznej struktury danych. Obecnie dplyr (wersja 0.5.0) obsługuje:

  • ramki danych
  • tabele danych
  • SQLite
  • PostgreSQL / Redshift
  • MySQL / MariaDB
  • Bigquery
  • MonetDB
  • kostki danych z tablicami (częściowa implementacja)

czasowniki pojedynczej tabeli dplyr

dplyr wprowadza gramatykę manipulacji danymi w języku R Zapewnia spójny interfejs do pracy z danymi bez względu na to, gdzie są przechowywane: data.frame , data.table lub database . Kluczowe elementy dplyr są pisane przy użyciu Rcpp , co czyni go bardzo szybkim do pracy z danymi w pamięci.

dplyr jest posiadanie małych funkcji, które dobrze wykonują jedną rzecz. Pięć prostych funkcji ( filter , arrange , select , mutate i summarise ) można wykorzystać do ujawnienia nowych sposobów opisywania danych. W połączeniu z group_by tych funkcji można używać do obliczania zbiorczych statystyk podsumowujących.

Wspólne cechy składniowe

Wszystkie te funkcje mają podobną składnię:

  • Pierwszym argumentem dla wszystkich tych funkcji jest zawsze ramka danych
  • Do kolumn można odwoływać się bezpośrednio, używając samych nagich zmiennych (tj. Bez użycia $ )
  • Funkcje te nie modyfikują samych oryginalnych danych, tzn. Nie mają skutków ubocznych. Dlatego wyniki należy zawsze zapisywać w obiekcie.

Użyjemy wbudowanego zestawu danych mtcars do badania czasowników pojedynczej tabeli dplyr . Przed konwersją typu mtcars na tbl_df (ponieważ sprawia, że drukowanie jest czystsze), dodajemy nazwy rownames zestawu danych jako kolumny za pomocą funkcji rownames_to_column z pakietu tibble .

library(dplyr) # This documentation was written using version 0.5.0

mtcars_tbl <- as_data_frame(tibble::rownames_to_column(mtcars, "cars"))

# examine the structure of data
head(mtcars_tbl)

# A tibble: 6 x 12
#               cars   mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
#              <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#1         Mazda RX4  21.0     6   160   110  3.90 2.620 16.46     0     1     4     4
#2     Mazda RX4 Wag  21.0     6   160   110  3.90 2.875 17.02     0     1     4     4
#3        Datsun 710  22.8     4   108    93  3.85 2.320 18.61     1     1     4     1
#4    Hornet 4 Drive  21.4     6   258   110  3.08 3.215 19.44     1     0     3     1
#5 Hornet Sportabout  18.7     8   360   175  3.15 3.440 17.02     0     0     3     2
#6           Valiant  18.1     6   225   105  2.76 3.460 20.22     1     0     3     1

filtr

filter pomaga w podzestawie wierszy spełniających określone kryteria. Pierwszy argument to nazwa data.frame a drugi (i kolejne) argumenty to kryteria filtrujące dane (kryteria te powinny mieć wartość TRUE lub FALSE )

Podzestawuj wszystkie samochody, które mają 4 cylindry - cyl :

filter(mtcars_tbl, cyl == 4) 

# A tibble: 11 x 12
#             cars   mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
#            <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#1      Datsun 710  22.8     4 108.0    93  3.85 2.320 18.61     1     1     4     1
#2       Merc 240D  24.4     4 146.7    62  3.69 3.190 20.00     1     0     4     2
#3        Merc 230  22.8     4 140.8    95  3.92 3.150 22.90     1     0     4     2
#4        Fiat 128  32.4     4  78.7    66  4.08 2.200 19.47     1     1     4     1
#5     Honda Civic  30.4     4  75.7    52  4.93 1.615 18.52     1     1     4     2
# ... with 6 more rows

Możemy przekazać wiele kryteriów oddzielonych przecinkiem. Aby podzestawić samochody, które mają 4 lub 6 cylindrów - cyl i mają 5 biegów - gear :

filter(mtcars_tbl, cyl == 4 | cyl == 6, gear == 5)

# A tibble: 3 x 12
#           cars   mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
#          <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#1 Porsche 914-2  26.0     4 120.3    91  4.43 2.140  16.7     0     1     5     2
#2  Lotus Europa  30.4     4  95.1   113  3.77 1.513  16.9     1     1     5     2
#3  Ferrari Dino  19.7     6 145.0   175  3.62 2.770  15.5     0     1     5     6

filter wybiera wiersze na podstawie kryteriów, aby wybrać wiersze według pozycji, użyj slice . slice przyjmuje tylko 2 argumenty: pierwszy to data.frame a drugi to liczby całkowite w wierszu.

Aby wybrać wiersze od 6 do 9:

slice(mtcars_tbl, 6:9)

# A tibble: 4 x 12
#        cars   mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
#       <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#1    Valiant  18.1     6 225.0   105  2.76  3.46 20.22     1     0     3     1
#2 Duster 360  14.3     8 360.0   245  3.21  3.57 15.84     0     0     3     4
#3  Merc 240D  24.4     4 146.7    62  3.69  3.19 20.00     1     0     4     2
#4   Merc 230  22.8     4 140.8    95  3.92  3.15 22.90     1     0     4     2

Lub:

slice(mtcars_tbl, -c(1:5, 10:n())) 

Daje to taki sam wynik jak slice(mtcars_tbl, 6:9)

n() reprezentuje liczbę obserwacji w bieżącej grupie

zorganizować

arrange służy do sortowania danych według określonych zmiennych. Podobnie jak poprzedni czasownik (i wszystkie inne funkcje w dplyr ), pierwszym argumentem jest data.frame , a data.frame argumenty są używane do sortowania danych. W przypadku przekazania więcej niż jednej zmiennej dane są najpierw sortowane według pierwszej zmiennej, a następnie według drugiej zmiennej itd.

Aby zamówić dane według mocy - hp

arrange(mtcars_tbl, hp) 

# A tibble: 32 x 12
#             cars   mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
#            <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#1     Honda Civic  30.4     4  75.7    52  4.93 1.615 18.52     1     1     4     2
#2       Merc 240D  24.4     4 146.7    62  3.69 3.190 20.00     1     0     4     2
#3  Toyota Corolla  33.9     4  71.1    65  4.22 1.835 19.90     1     1     4     1
#4        Fiat 128  32.4     4  78.7    66  4.08 2.200 19.47     1     1     4     1
#5       Fiat X1-9  27.3     4  79.0    66  4.08 1.935 18.90     1     1     4     1
#6   Porsche 914-2  26.0     4 120.3    91  4.43 2.140 16.70     0     1     5     2
# ... with 26 more rows

Aby arrange dane według mil na galon - mpg w kolejności malejącej, a następnie liczbę cylindrów - cyl :

arrange(mtcars_tbl, desc(mpg), cyl)

# A tibble: 32 x 12
#             cars   mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
#            <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#1  Toyota Corolla  33.9     4  71.1    65  4.22 1.835 19.90     1     1     4     1
#2        Fiat 128  32.4     4  78.7    66  4.08 2.200 19.47     1     1     4     1
#3     Honda Civic  30.4     4  75.7    52  4.93 1.615 18.52     1     1     4     2
#4    Lotus Europa  30.4     4  95.1   113  3.77 1.513 16.90     1     1     5     2
#5       Fiat X1-9  27.3     4  79.0    66  4.08 1.935 18.90     1     1     4     1
#6   Porsche 914-2  26.0     4 120.3    91  4.43 2.140 16.70     0     1     5     2
# ... with 26 more rows

Wybierz

select służy do wybrania tylko podzbioru zmiennych. Aby wybrać tylko mpg , disp , wt , qsec i vs z mtcars_tbl :

select(mtcars_tbl, mpg, disp, wt, qsec, vs)

# A tibble: 32 x 5
#     mpg  disp    wt  qsec    vs
#   <dbl> <dbl> <dbl> <dbl> <dbl>
#1   21.0 160.0 2.620 16.46     0
#2   21.0 160.0 2.875 17.02     0
#3   22.8 108.0 2.320 18.61     1
#4   21.4 258.0 3.215 19.44     1
#5   18.7 360.0 3.440 17.02     0
#6   18.1 225.0 3.460 20.22     1
# ... with 26 more rows

: notacji można używać do wybierania kolejnych kolumn. Aby wybrać kolumny od cars przez disp i vs przez carb :

select(mtcars_tbl, cars:disp, vs:carb)

# A tibble: 32 x 8
#                cars   mpg   cyl  disp    vs    am  gear  carb
#               <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#1          Mazda RX4  21.0     6 160.0     0     1     4     4
#2      Mazda RX4 Wag  21.0     6 160.0     0     1     4     4
#3         Datsun 710  22.8     4 108.0     1     1     4     1
#4     Hornet 4 Drive  21.4     6 258.0     1     0     3     1
#5  Hornet Sportabout  18.7     8 360.0     0     0     3     2
#6            Valiant  18.1     6 225.0     1     0     3     1
# ... with 26 more rows

lub select(mtcars_tbl, -(hp:qsec))

W przypadku zestawów danych zawierających kilka kolumn wybranie kilku kolumn według nazwy może być żmudne. Aby ułatwić życie, istnieje wiele funkcji pomocniczych (takich jak starts_with() , ends_with() , contains() , matches() , num_range() , one_of() i everything() ), których można użyć w select . Aby dowiedzieć się więcej o tym, jak z nich korzystać, zobacz ?select_helpers i ?select .

Uwaga : Odnosząc się do kolumn bezpośrednio w select() , używamy nagich nazw kolumn, ale należy używać cudzysłowów w odniesieniu do kolumn w funkcjach pomocniczych.

Aby zmienić nazwę kolumn podczas wybierania:

select(mtcars_tbl, cylinders = cyl, displacement = disp) 

# A tibble: 32 x 2
#   cylinders displacement
#       <dbl>        <dbl>
#1          6        160.0
#2          6        160.0
#3          4        108.0
#4          6        258.0
#5          8        360.0
#6          6        225.0
# ... with 26 more rows

Zgodnie z oczekiwaniami spowoduje to usunięcie wszystkich innych zmiennych.

Aby zmienić nazwę kolumn bez upuszczania innych zmiennych, użyj rename :

rename(mtcars_tbl, cylinders = cyl, displacement = disp)

# A tibble: 32 x 12
#                cars   mpg cylinders displacement    hp  drat    wt  qsec    vs
#               <chr> <dbl>     <dbl>        <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#1          Mazda RX4  21.0         6        160.0   110  3.90 2.620 16.46     0
#2      Mazda RX4 Wag  21.0         6        160.0   110  3.90 2.875 17.02     0
#3         Datsun 710  22.8         4        108.0    93  3.85 2.320 18.61     1
#4     Hornet 4 Drive  21.4         6        258.0   110  3.08 3.215 19.44     1
#5  Hornet Sportabout  18.7         8        360.0   175  3.15 3.440 17.02     0
#6            Valiant  18.1         6        225.0   105  2.76 3.460 20.22     1
# ... with 26 more rows, and 3 more variables: am <dbl>, gear <dbl>, carb <dbl>

zmutować

mutate można wykorzystać do dodania nowych kolumn do danych. Podobnie jak wszystkie inne funkcje w dplyr , dplyr nie dodaje nowo utworzonych kolumn do oryginalnych danych. Kolumny są dodawane na końcu data.frame .

mutate(mtcars_tbl, weight_ton = wt/2, weight_pounds = weight_ton * 2000)

# A tibble: 32 x 14
#                cars   mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb weight_ton weight_pounds
#               <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>      <dbl>         <dbl>
#1          Mazda RX4  21.0     6 160.0   110  3.90 2.620 16.46     0     1     4     4     1.3100          2620
#2      Mazda RX4 Wag  21.0     6 160.0   110  3.90 2.875 17.02     0     1     4     4     1.4375          2875
#3         Datsun 710  22.8     4 108.0    93  3.85 2.320 18.61     1     1     4     1     1.1600          2320
#4     Hornet 4 Drive  21.4     6 258.0   110  3.08 3.215 19.44     1     0     3     1     1.6075          3215
#5  Hornet Sportabout  18.7     8 360.0   175  3.15 3.440 17.02     0     0     3     2     1.7200          3440
#6            Valiant  18.1     6 225.0   105  2.76 3.460 20.22     1     0     3     1     1.7300          3460
# ... with 26 more rows

Zwróć uwagę na użycie weight_ton podczas tworzenia weight_pounds . W przeciwieństwie do bazy R mutate pozwala nam odwoływać się do kolumn, które właśnie utworzyliśmy, do użycia w kolejnej operacji.

Aby zachować tylko nowo utworzone kolumny, użyj opcji transmute zamiast mutate :

transmute(mtcars_tbl, weight_ton = wt/2, weight_pounds = weight_ton * 2000)

# A tibble: 32 x 2
#   weight_ton weight_pounds
#        <dbl>         <dbl>
#1      1.3100          2620
#2      1.4375          2875
#3      1.1600          2320
#4      1.6075          3215
#5      1.7200          3440
#6      1.7300          3460
# ... with 26 more rows

podsumować

summarise oblicza statystyki podsumowujące zmiennych poprzez zwijanie wielu wartości do jednej wartości. Może obliczyć wiele statystyk i możemy nazwać te kolumny podsumowań w tym samym zestawieniu.

Aby obliczyć średnią i odchylenie standardowe mpg i disp wszystkich samochodów w zbiorze danych:

summarise(mtcars_tbl, mean_mpg = mean(mpg), sd_mpg = sd(mpg), 
          mean_disp = mean(disp), sd_disp = sd(disp))

# A tibble: 1 x 4
#  mean_mpg   sd_mpg mean_disp  sd_disp
#     <dbl>    <dbl>     <dbl>    <dbl>
#1 20.09062 6.026948  230.7219 123.9387

Grupuj według

group_by może służyć do wykonywania operacji grupowych na danych. Gdy czasowniki zdefiniowane powyżej zostaną zastosowane do danych zgrupowanych, zostaną one automatycznie zastosowane do każdej grupy osobno.

Aby znaleźć mean i sd z mpg przez cyl :

by_cyl <- group_by(mtcars_tbl, cyl)
summarise(by_cyl, mean_mpg = mean(mpg), sd_mpg = sd(mpg))


# A tibble: 3 x 3
#    cyl mean_mpg   sd_mpg
#  <dbl>    <dbl>    <dbl>
#1     4 26.66364 4.509828
#2     6 19.74286 1.453567
#3     8 15.10000 2.560048

Łącząc to wszystko razem

Wybieramy kolumny od cars przez hp i gear , porządkujemy rzędy po cyl i od najwyższego do najniższego mpg , mpg dane według gear , a na końcu podzbiór tylko te samochody mają mpg > 20 i hp > 75

selected <- select(mtcars_tbl, cars:hp, gear)
ordered <- arrange(selected, cyl, desc(mpg))
by_cyl <- group_by(ordered, gear)
filter(by_cyl, mpg > 20, hp > 75)

Source: local data frame [9 x 6]
Groups: gear [3]

#            cars   mpg   cyl  disp    hp  gear
#           <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#1   Lotus Europa  30.4     4  95.1   113     5
#2  Porsche 914-2  26.0     4 120.3    91     5
#3     Datsun 710  22.8     4 108.0    93     4
#4       Merc 230  22.8     4 140.8    95     4
#5  Toyota Corona  21.5     4 120.1    97     3
# ... with 4 more rows

Może nie jesteśmy zainteresowani wynikami pośrednimi, możemy osiągnąć taki sam wynik jak powyżej, zawijając wywołania funkcji:

filter(
    group_by(
        arrange(
            select(
                mtcars_tbl, cars:hp
            ), cyl, desc(mpg)
        ), cyl   
    ),mpg > 20, hp > 75 
)

Może to być trochę trudne do odczytania. Tak więc operacje dplyr można łączyć za pomocą operatora potoku %>% . Powyższy kod przekłada się na:

mtcars_tbl %>% 
    select(cars:hp) %>% 
    arrange(cyl, desc(mpg)) %>%
    group_by(cyl) %>% 
    filter(mpg > 20, hp > 75) 

podsumuj wiele kolumn

dplyr zapewnia summarise_all() do zastosowania funkcji do wszystkich (nie grupujących) kolumn.

Aby znaleźć liczbę różnych wartości dla każdej kolumny:

mtcars_tbl %>% 
    summarise_all(n_distinct)

# A tibble: 1 x 12
#   cars   mpg   cyl  disp    hp  drat    wt  qsec    vs    am  gear  carb
#  <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int>
#1    32    25     3    27    22    22    29    30     2     2     3     6

Aby znaleźć liczbę różnych wartości dla każdej kolumny według cyl :

mtcars_tbl %>% 
    group_by(cyl) %>% 
    summarise_all(n_distinct)

# A tibble: 3 x 12
#    cyl  cars   mpg  disp    hp  drat    wt  qsec    vs    am  gear  carb
#  <dbl> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int>
#1     4    11     9    11    10    10    11    11     2     2     3     2
#2     6     7     6     5     4     5     6     7     2     2     3     3
#3     8    14    12    11     9    11    13    14     1     2     2     4

Zauważ, że po prostu musieliśmy dodać instrukcję group_by , a reszta kodu jest taka sama. Dane wyjściowe składają się teraz z trzech wierszy - po jednym dla każdej unikalnej wartości cyl .

Aby summarise określone wiele kolumn, użyj summarise_at

mtcars_tbl %>% 
    group_by(cyl) %>% 
    summarise_at(c("mpg", "disp", "hp"), mean)

# A tibble: 3 x 4
#    cyl      mpg     disp        hp
#  <dbl>    <dbl>    <dbl>     <dbl>
#1     4 26.66364 105.1364  82.63636
#2     6 19.74286 183.3143 122.28571
#3     8 15.10000 353.1000 209.21429

funkcje helper ( ?select_helpers ) mogą być używane zamiast nazw kolumn do wybierania określonych kolumn

Aby zastosować wiele funkcji, przekaż nazwy funkcji jako wektor znaków:

mtcars_tbl %>% 
    group_by(cyl) %>% 
    summarise_at(c("mpg", "disp", "hp"), 
                 c("mean", "sd"))

lub owiń je w funs :

mtcars_tbl %>% 
    group_by(cyl) %>% 
    summarise_at(c("mpg", "disp", "hp"), 
                 funs(mean, sd))

# A tibble: 3 x 7
#    cyl mpg_mean disp_mean   hp_mean   mpg_sd  disp_sd    hp_sd
#  <dbl>    <dbl>     <dbl>     <dbl>    <dbl>    <dbl>    <dbl>
#1     4 26.66364  105.1364  82.63636 4.509828 26.87159 20.93453
#2     6 19.74286  183.3143 122.28571 1.453567 41.56246 24.26049
#3     8 15.10000  353.1000 209.21429 2.560048 67.77132 50.97689

Nazwy kolumn są teraz dołączane do nazw funkcji, aby je odróżnić. Aby to zmienić, podaj nazwę, która ma zostać dołączona do funkcji:

mtcars_tbl %>% 
    group_by(cyl) %>% 
    summarise_at(c("mpg", "disp", "hp"), 
                 c(Mean = "mean", SD = "sd"))

mtcars_tbl %>% 
    group_by(cyl) %>% 
    summarise_at(c("mpg", "disp", "hp"), 
                 funs(Mean = mean, SD = sd))


# A tibble: 3 x 7
#    cyl mpg_Mean disp_Mean   hp_Mean   mpg_SD  disp_SD    hp_SD
#  <dbl>    <dbl>     <dbl>     <dbl>    <dbl>    <dbl>    <dbl>
#1     4 26.66364  105.1364  82.63636 4.509828 26.87159 20.93453
#2     6 19.74286  183.3143 122.28571 1.453567 41.56246 24.26049
#3     8 15.10000  353.1000 209.21429 2.560048 67.77132 50.97689

Aby warunkowo wybrać kolumny, użyj summarise_if :

Weź mean wszystkich kolumn, które są pogrupowane numeric według cyl :

mtcars_tbl %>% 
    group_by(cyl) %>% 
    summarise_if(is.numeric, mean) 

# A tibble: 3 x 11
#    cyl      mpg     disp        hp     drat       wt     qsec
#  <dbl>    <dbl>    <dbl>     <dbl>    <dbl>    <dbl>    <dbl>
#1     4 26.66364 105.1364  82.63636 4.070909 2.285727 19.13727
#2     6 19.74286 183.3143 122.28571 3.585714 3.117143 17.97714
#3     8 15.10000 353.1000 209.21429 3.229286 3.999214 16.77214
# ... with 4 more variables: vs <dbl>, am <dbl>, gear <dbl>,
#   carb <dbl>

Jednak niektóre zmienne są dyskretne, a mean tych zmiennych nie ma sensu.

Aby przyjąć mean tylko zmiennych ciągłych według cyl :

mtcars_tbl %>% 
    group_by(cyl) %>% 
    summarise_if(function(x) is.numeric(x) & n_distinct(x) > 6, mean)

# A tibble: 3 x 7
#    cyl      mpg     disp        hp     drat       wt     qsec
#  <dbl>    <dbl>    <dbl>     <dbl>    <dbl>    <dbl>    <dbl>
#1     4 26.66364 105.1364  82.63636 4.070909 2.285727 19.13727
#2     6 19.74286 183.3143 122.28571 3.585714 3.117143 17.97714
#3     8 15.10000 353.1000 209.21429 3.229286 3.999214 16.77214

Obserwacja podzbioru (wiersze)

dplyr::filter() - Wybierz podzbiór wierszy w ramce danych, które spełniają logiczne kryteria:

dplyr::filter(iris,Sepal.Length>7)
#       Sepal.Length Sepal.Width Petal.Length Petal.Width   Species
#    1           7.1         3.0          5.9         2.1 virginica
#    2           7.6         3.0          6.6         2.1 virginica
#    3           7.3         2.9          6.3         1.8 virginica
#    4           7.2         3.6          6.1         2.5 virginica
#    5           7.7         3.8          6.7         2.2 virginica
#    6           7.7         2.6          6.9         2.3 virginica
#    7           7.7         2.8          6.7         2.0 virginica
#    8           7.2         3.2          6.0         1.8 virginica
#    9           7.2         3.0          5.8         1.6 virginica
#    10          7.4         2.8          6.1         1.9 virginica
#    11          7.9         3.8          6.4         2.0 virginica
#    12          7.7         3.0          6.1         2.3 virginica

dplyr::distinct() - Usuń zduplikowane wiersze:

distinct(iris, Sepal.Length, .keep_all = TRUE)
#       Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
#    1           5.1         3.5          1.4         0.2     setosa
#    2           4.9         3.0          1.4         0.2     setosa
#    3           4.7         3.2          1.3         0.2     setosa
#    4           4.6         3.1          1.5         0.2     setosa
#    5           5.0         3.6          1.4         0.2     setosa
#    6           5.4         3.9          1.7         0.4     setosa
#    7           4.4         2.9          1.4         0.2     setosa
#    8           4.8         3.4          1.6         0.2     setosa
#    9           4.3         3.0          1.1         0.1     setosa
#   10          5.8         4.0          1.2         0.2     setosa
#   11          5.7         4.4          1.5         0.4     setosa
#   12          5.2         3.5          1.5         0.2     setosa
#   13          5.5         4.2          1.4         0.2     setosa
#   14          4.5         2.3          1.3         0.3     setosa
#   15          5.3         3.7          1.5         0.2     setosa
#   16          7.0         3.2          4.7         1.4 versicolor
#   17          6.4         3.2          4.5         1.5 versicolor
#   18          6.9         3.1          4.9         1.5 versicolor
#   19          6.5         2.8          4.6         1.5 versicolor
#   20          6.3         3.3          4.7         1.6 versicolor
#   21          6.6         2.9          4.6         1.3 versicolor
#   22          5.9         3.0          4.2         1.5 versicolor
#   23          6.0         2.2          4.0         1.0 versicolor
#   24          6.1         2.9          4.7         1.4 versicolor
#   25          5.6         2.9          3.6         1.3 versicolor
#   26          6.7         3.1          4.4         1.4 versicolor
#   27          6.2         2.2          4.5         1.5 versicolor
#   28          6.8         2.8          4.8         1.4 versicolor
#   29          7.1         3.0          5.9         2.1  virginica
#   30          7.6         3.0          6.6         2.1  virginica
#   31          7.3         2.9          6.3         1.8  virginica
#   32          7.2         3.6          6.1         2.5  virginica
#   33          7.7         3.8          6.7         2.2  virginica
#   34          7.4         2.8          6.1         1.9  virginica
#   35          7.9         3.8          6.4         2.0  virginica

Agregowanie za pomocą operatora%>% (potok)

Rura (%>%) podmiot może być stosowany w połączeniu z dplyr funkcji. W tym przykładzie używamy zestawu danych mtcars (zobacz help("mtcars") aby uzyskać więcej informacji), aby pokazać, jak podsumować ramkę danych i dodać zmienne do danych w wyniku zastosowania funkcji.

library(dplyr)
library(magrittr)
df <- mtcars
df$cars <- rownames(df) #just add the cars names to the df
df <- df[,c(ncol(df),1:(ncol(df)-1))] # and place the names in the first column

1. Sumuj dane

Do obliczenia statystyk wykorzystujemy summarize i odpowiednie funkcje. W tym przypadku n() służy do zliczania liczby przypadków.

 df %>%
  summarize(count=n(),mean_mpg = mean(mpg, na.rm = TRUE),
            min_weight = min(wt),max_weight = max(wt))

#  count mean_mpg min_weight max_weight
#1    32 20.09062      1.513      5.424

2. Oblicz statystyki według grup

Możliwe jest obliczenie statystyk według grup danych. W tym przypadku według liczby cylindrów i liczby biegów do przodu

df %>%
  group_by(cyl, gear) %>%
  summarize(count=n(),mean_mpg = mean(mpg, na.rm = TRUE),
            min_weight = min(wt),max_weight = max(wt))

# Source: local data frame [8 x 6]
# Groups: cyl [?]
#
#    cyl  gear count mean_mpg min_weight max_weight
#  <dbl> <dbl> <int>    <dbl>      <dbl>      <dbl>
#1     4     3     1   21.500      2.465      2.465
#2     4     4     8   26.925      1.615      3.190
#3     4     5     2   28.200      1.513      2.140
#4     6     3     2   19.750      3.215      3.460
#5     6     4     4   19.750      2.620      3.440
#6     6     5     1   19.700      2.770      2.770
#7     8     3    12   15.050      3.435      5.424
#8     8     5     2   15.400      3.170      3.570

Przykłady NSE i zmiennych łańcuchowych w dpylr

dplyr używa oceny niestandardowej (NSE), dlatego zwykle możemy używać nazw zmiennych bez cudzysłowów. Jednak czasami podczas potoku danych musimy uzyskać nazwy zmiennych z innych źródeł, takich jak Błyszczące pole wyboru. W przypadku funkcji takich jak select , możemy po prostu użyć select_ aby wybrać zmienną łańcuchową

variable1 <- "Sepal.Length"
variable2 <- "Sepal.Width"
iris %>%
select_(variable1, variable2) %>%
head(n=5)
#  Sepal.Length Sepal.Width
#  1          5.1         3.5
#  2          4.9         3.0
#  3          4.7         3.2
#  4          4.6         3.1
#  5          5.0         3.6

Ale jeśli chcemy korzystać z innych funkcji, takich jak podsumowaniu bądź filtra musimy użyć interp funkcji z lazyeval pakietu

variable1 <- "Sepal.Length"
variable2 <- "Sepal.Width"
variable3 <- "Species"
iris %>%
select_(variable1, variable2, variable3) %>%
group_by_(variable3) %>%
summarize_(mean1 = lazyeval::interp(~mean(var), var = as.name(variable1)), mean2 = lazyeval::interp(~mean(var), var = as.name(variable2)))
#      Species mean1 mean2
#       <fctr> <dbl> <dbl>
# 1     setosa 5.006 3.428
# 2 versicolor 5.936 2.770
# 3  virginica 6.588 2.974


Modified text is an extract of the original Stack Overflow Documentation
Licencjonowany na podstawie CC BY-SA 3.0
Nie związany z Stack Overflow