R Language
Modelli di Arima
Ricerca…
Osservazioni
La funzione Arima
nel pacchetto di previsione è più esplicita nel modo in cui tratta le costanti, il che può rendere più semplice per alcuni utenti la funzione arima
nella base R.
ARIMA è un framework generale per la modellazione e la realizzazione di previsioni da dati di serie temporali utilizzando (principalmente) la serie stessa. Lo scopo del framework è di differenziare le dinamiche a breve e lungo termine in una serie per migliorare l'accuratezza e la certezza delle previsioni. Più poeticamente, i modelli ARIMA forniscono un metodo per descrivere come gli shock di un sistema trasmettono nel tempo.
Dal punto di vista econometrico, gli elementi ARIMA sono necessari per correggere la correlazione seriale e garantire la stazionarietà.
Modellazione di un processo AR1 con Arima
Modelleremo il processo
#Load the forecast package
library(forecast)
#Generate an AR1 process of length n (from Cowpertwait & Meltcalfe)
# Set up variables
set.seed(1234)
n <- 1000
x <- matrix(0,1000,1)
w <- rnorm(n)
# loop to create x
for (t in 2:n) x[t] <- 0.7 * x[t-1] + w[t]
plot(x,type='l')
Adatteremo un modello Arima con ordine autoregressivo 1, 0 gradi di differenziazione e un ordine MA pari a 0.
#Fit an AR1 model using Arima
fit <- Arima(x, order = c(1, 0, 0))
summary(fit)
# Series: x
# ARIMA(1,0,0) with non-zero mean
#
# Coefficients:
# ar1 intercept
# 0.7040 -0.0842
# s.e. 0.0224 0.1062
#
# sigma^2 estimated as 0.9923: log likelihood=-1415.39
# AIC=2836.79 AICc=2836.81 BIC=2851.51
#
# Training set error measures:
# ME RMSE MAE MPE MAPE MASE ACF1
# Training set -8.369365e-05 0.9961194 0.7835914 Inf Inf 0.91488 0.02263595
# Verify that the model captured the true AR parameter
Si noti che il nostro coefficiente è vicino al valore reale dai dati generati
fit$coef[1]
# ar1
# 0.7040085
#Verify that the model eliminates the autocorrelation
acf(x)
acf(fit$resid)
#Forecast 10 periods
fcst <- forecast(fit, h = 100)
fcst
Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
1001 0.282529070 -0.9940493 1.559107 -1.669829 2.234887
1002 0.173976408 -1.3872262 1.735179 -2.213677 2.561630
1003 0.097554408 -1.5869850 1.782094 -2.478726 2.673835
1004 0.043752667 -1.6986831 1.786188 -2.621073 2.708578
1005 0.005875783 -1.7645535 1.776305 -2.701762 2.713514
...
#Call the point predictions
fcst$mean
# Time Series:
# Start = 1001
# End = 1100
# Frequency = 1
[1] 0.282529070 0.173976408 0.097554408 0.043752667 0.005875783 -0.020789866 -0.039562711 -0.052778954
[9] -0.062083302
...
#Plot the forecast
plot(fcst)