R Language
ODEs को R में हल करना
खोज…
वाक्य - विन्यास
- ओदे (y, times, func, parms, method, ...)
पैरामीटर
पैरामीटर | विवरण |
---|---|
y | (नामित) संख्यात्मक वेक्टर: ODE प्रणाली के लिए प्रारंभिक (राज्य) मान |
बार | समय अनुक्रम जिसके लिए आउटपुट चाहिए; समय का पहला मूल्य प्रारंभिक समय होना चाहिए |
समारोह | उस फ़ंक्शन का नाम जो ODE सिस्टम में डेरिवेटिव के मानों की गणना करता है |
parms | (नामित) संख्यात्मक वेक्टर: पैरामीटर को फंक से पारित किया गया |
तरीका | इंटीग्रेटर का उपयोग करने के लिए, डिफ़ॉल्ट रूप से: lsoda |
टिप्पणियों
ध्यान दें कि राज्य चर के विनिर्देशन के रूप में उसी क्रम में परिवर्तन की दर को वापस करना आवश्यक है। उदाहरण में "लोरेंज मॉडल" इसका मतलब है, कि फ़ंक्शन "लोरेंज" कमांड में
return(list(c(dX, dY, dZ)))
राज्य चर की परिभाषा के समान ही आदेश है
yini <- c(X = 1, Y = 1, Z = 1)
लोरेंज मॉडल
लोरेंज मॉडल तीन राज्य चर, एक्स, वाई और जेड की गतिशीलता का वर्णन करता है। मॉडल समीकरण हैं:
प्रारंभिक शर्तें हैं:
और ए, बी और सी तीन पैरामीटर हैं
library(deSolve)
## -----------------------------------------------------------------------------
## Define R-function
## ----------------------------------------------------------------------------
Lorenz <- function (t, y, parms) {
with(as.list(c(y, parms)), {
dX <- a * X + Y * Z
dY <- b * (Y - Z)
dZ <- -X * Y + c * Y - Z
return(list(c(dX, dY, dZ)))
})
}
## -----------------------------------------------------------------------------
## Define parameters and variables
## -----------------------------------------------------------------------------
parms <- c(a = -8/3, b = -10, c = 28)
yini <- c(X = 1, Y = 1, Z = 1)
times <- seq(from = 0, to = 100, by = 0.01)
## -----------------------------------------------------------------------------
## Solve the ODEs
## -----------------------------------------------------------------------------
out <- ode(y = yini, times = times, func = Lorenz, parms = parms)
## -----------------------------------------------------------------------------
## Plot the results
## -----------------------------------------------------------------------------
plot(out, lwd = 2)
plot(out[,"X"], out[,"Y"],
type = "l", xlab = "X",
ylab = "Y", main = "butterfly")
लोटका-वोल्तेरा या: प्रीई बनाम शिकारी
library(deSolve)
## -----------------------------------------------------------------------------
## Define R-function
## -----------------------------------------------------------------------------
LV <- function(t, y, parms) {
with(as.list(c(y, parms)), {
dP <- rG * P * (1 - P/K) - rI * P * C
dC <- rI * P * C * AE - rM * C
return(list(c(dP, dC), sum = C+P))
})
}
## -----------------------------------------------------------------------------
## Define parameters and variables
## -----------------------------------------------------------------------------
parms <- c(rI = 0.2, rG = 1.0, rM = 0.2, AE = 0.5, K = 10)
yini <- c(P = 1, C = 2)
times <- seq(from = 0, to = 200, by = 1)
## -----------------------------------------------------------------------------
## Solve the ODEs
## -----------------------------------------------------------------------------
out <- ode(y = yini, times = times, func = LV, parms = parms)
## -----------------------------------------------------------------------------
## Plot the results
## -----------------------------------------------------------------------------
matplot(out[ ,1], out[ ,2:4], type = "l", xlab = "time", ylab = "Conc",
main = "Lotka-Volterra", lwd = 2)
legend("topright", c("prey", "predator", "sum"), col = 1:3, lty = 1:3)
संकलित भाषाओं में ODEs - R में परिभाषा
library(deSolve)
## -----------------------------------------------------------------------------
## Define parameters and variables
## -----------------------------------------------------------------------------
eps <- 0.01;
M <- 10
k <- M * eps^2/2
L <- 1
L0 <- 0.5
r <- 0.1
w <- 10
g <- 1
parameter <- c(eps = eps, M = M, k = k, L = L, L0 = L0, r = r, w = w, g = g)
yini <- c(xl = 0, yl = L0, xr = L, yr = L0,
ul = -L0/L, vl = 0,
ur = -L0/L, vr = 0,
lam1 = 0, lam2 = 0)
times <- seq(from = 0, to = 3, by = 0.01)
## -----------------------------------------------------------------------------
## Define R-function
## -----------------------------------------------------------------------------
caraxis_R <- function(t, y, parms) {
with(as.list(c(y, parms)), {
yb <- r * sin(w * t)
xb <- sqrt(L * L - yb * yb)
Ll <- sqrt(xl^2 + yl^2)
Lr <- sqrt((xr - xb)^2 + (yr - yb)^2)
dxl <- ul; dyl <- vl; dxr <- ur; dyr <- vr
dul <- (L0-Ll) * xl/Ll + 2 * lam2 * (xl-xr) + lam1*xb
dvl <- (L0-Ll) * yl/Ll + 2 * lam2 * (yl-yr) + lam1*yb - k * g
dur <- (L0-Lr) * (xr-xb)/Lr - 2 * lam2 * (xl-xr)
dvr <- (L0-Lr) * (yr-yb)/Lr - 2 * lam2 * (yl-yr) - k * g
c1 <- xb * xl + yb * yl
c2 <- (xl - xr)^2 + (yl - yr)^2 - L * L
return(list(c(dxl, dyl, dxr, dyr, dul, dvl, dur, dvr, c1, c2)))
})
}
संकलित भाषाओं में ODEs - सी में परिभाषा
sink("caraxis_C.c")
cat("
/* suitable names for parameters and state variables */
#include <R.h>
#include <math.h>
static double parms[8];
#define eps parms[0]
#define m parms[1]
#define k parms[2]
#define L parms[3]
#define L0 parms[4]
#define r parms[5]
#define w parms[6]
#define g parms[7]
/*----------------------------------------------------------------------
initialising the parameter common block
----------------------------------------------------------------------
*/
void init_C(void (* daeparms)(int *, double *)) {
int N = 8;
daeparms(&N, parms);
}
/* Compartments */
#define xl y[0]
#define yl y[1]
#define xr y[2]
#define yr y[3]
#define lam1 y[8]
#define lam2 y[9]
/*----------------------------------------------------------------------
the residual function
----------------------------------------------------------------------
*/
void caraxis_C (int *neq, double *t, double *y, double *ydot,
double *yout, int* ip)
{
double yb, xb, Lr, Ll;
yb = r * sin(w * *t) ;
xb = sqrt(L * L - yb * yb);
Ll = sqrt(xl * xl + yl * yl) ;
Lr = sqrt((xr-xb)*(xr-xb) + (yr-yb)*(yr-yb));
ydot[0] = y[4];
ydot[1] = y[5];
ydot[2] = y[6];
ydot[3] = y[7];
ydot[4] = (L0-Ll) * xl/Ll + lam1*xb + 2*lam2*(xl-xr) ;
ydot[5] = (L0-Ll) * yl/Ll + lam1*yb + 2*lam2*(yl-yr) - k*g;
ydot[6] = (L0-Lr) * (xr-xb)/Lr - 2*lam2*(xl-xr) ;
ydot[7] = (L0-Lr) * (yr-yb)/Lr - 2*lam2*(yl-yr) - k*g ;
ydot[8] = xb * xl + yb * yl;
ydot[9] = (xl-xr) * (xl-xr) + (yl-yr) * (yl-yr) - L*L;
}
", fill = TRUE)
sink()
system("R CMD SHLIB caraxis_C.c")
dyn.load(paste("caraxis_C", .Platform$dynlib.ext, sep = ""))
dllname_C <- dyn.load(paste("caraxis_C", .Platform$dynlib.ext, sep = ""))[[1]]
संकलित भाषाओं में ODEs - फोरट्रान में परिभाषा
sink("caraxis_fortran.f")
cat("
c----------------------------------------------------------------
c Initialiser for parameter common block
c----------------------------------------------------------------
subroutine init_fortran(daeparms)
external daeparms
integer, parameter :: N = 8
double precision parms(N)
common /myparms/parms
call daeparms(N, parms)
return
end
c----------------------------------------------------------------
c rate of change
c----------------------------------------------------------------
subroutine caraxis_fortran(neq, t, y, ydot, out, ip)
implicit none
integer neq, IP(*)
double precision t, y(neq), ydot(neq), out(*)
double precision eps, M, k, L, L0, r, w, g
common /myparms/ eps, M, k, L, L0, r, w, g
double precision xl, yl, xr, yr, ul, vl, ur, vr, lam1, lam2
double precision yb, xb, Ll, Lr, dxl, dyl, dxr, dyr
double precision dul, dvl, dur, dvr, c1, c2
c expand state variables
xl = y(1)
yl = y(2)
xr = y(3)
yr = y(4)
ul = y(5)
vl = y(6)
ur = y(7)
vr = y(8)
lam1 = y(9)
lam2 = y(10)
yb = r * sin(w * t)
xb = sqrt(L * L - yb * yb)
Ll = sqrt(xl**2 + yl**2)
Lr = sqrt((xr - xb)**2 + (yr - yb)**2)
dxl = ul
dyl = vl
dxr = ur
dyr = vr
dul = (L0-Ll) * xl/Ll + 2 * lam2 * (xl-xr) + lam1*xb
dvl = (L0-Ll) * yl/Ll + 2 * lam2 * (yl-yr) + lam1*yb - k*g
dur = (L0-Lr) * (xr-xb)/Lr - 2 * lam2 * (xl-xr)
dvr = (L0-Lr) * (yr-yb)/Lr - 2 * lam2 * (yl-yr) - k*g
c1 = xb * xl + yb * yl
c2 = (xl - xr)**2 + (yl - yr)**2 - L * L
c function values in ydot
ydot(1) = dxl
ydot(2) = dyl
ydot(3) = dxr
ydot(4) = dyr
ydot(5) = dul
ydot(6) = dvl
ydot(7) = dur
ydot(8) = dvr
ydot(9) = c1
ydot(10) = c2
return
end
", fill = TRUE)
sink()
system("R CMD SHLIB caraxis_fortran.f")
dyn.load(paste("caraxis_fortran", .Platform$dynlib.ext, sep = ""))
dllname_fortran <- dyn.load(paste("caraxis_fortran", .Platform$dynlib.ext, sep = ""))[[1]]
संकलित भाषाओं में ODEs - एक बेंचमार्क टेस्ट
जब आपने पहले तीन उदाहरणों में कोड संकलित और लोड किया था (संकलित भाषाओं में ODEs - R में परिभाषा, संकलित भाषाओं में ODEs - संकलित भाषाओं में C और ODEs में परिभाषा - फोरट्रान में परिभाषा) आप एक बेंचमार्क परीक्षण चलाने में सक्षम हैं।
library(microbenchmark)
R <- function(){
out <- ode(y = yini, times = times, func = caraxis_R,
parms = parameter)
}
C <- function(){
out <- ode(y = yini, times = times, func = "caraxis_C",
initfunc = "init_C", parms = parameter,
dllname = dllname_C)
}
fortran <- function(){
out <- ode(y = yini, times = times, func = "caraxis_fortran",
initfunc = "init_fortran", parms = parameter,
dllname = dllname_fortran)
}
जाँच करें कि क्या परिणाम बराबर हैं:
all.equal(tail(R()), tail(fortran()))
all.equal(R()[,2], fortran()[,2])
all.equal(R()[,2], C()[,2])
एक बेंचमार्क बनाएं (नोट: आपकी मशीन पर समय निश्चित रूप से अलग हैं):
bench <- microbenchmark::microbenchmark(
R(),
fortran(),
C(),
times = 1000
)
summary(bench)
expr min lq mean median uq max neval cld
R() 31508.928 33651.541 36747.8733 36062.2475 37546.8025 132996.564 1000 b
fortran() 570.674 596.700 686.1084 637.4605 730.1775 4256.555 1000 a
C() 562.163 590.377 673.6124 625.0700 723.8460 5914.347 1000 a
हम स्पष्ट रूप से देखते हैं, कि R, C और फोरट्रान में परिभाषा के विपरीत धीमा है। बड़े मॉडलों के लिए यह समस्या को संकलित भाषा में अनुवाद करने लायक है। पैकेज cOde
ODEs को R से C में अनुवाद करने की एक संभावना है।