R Language
Résoudre les ODE dans R
Recherche…
Syntaxe
- ode (y, times, func, parms, method, ...)
Paramètres
Paramètre | Détails |
---|---|
y | vecteur numérique (nommé): les valeurs initiales (d'état) du système ODE |
fois | séquence temporelle pour laquelle la sortie est souhaitée; la première valeur des temps doit être l'heure initiale |
func | nom de la fonction qui calcule les valeurs des dérivées dans le système ODE |
parmes | vecteur numérique (nommé): paramètres passés à func |
méthode | l'intégrateur à utiliser, par défaut: lsoda |
Remarques
Notez qu'il est nécessaire de renvoyer le taux de changement dans le même ordre que la spécification des variables d'état. Dans l'exemple "Le modèle de Lorenz", cela signifie que dans la fonction "Lorenz" la commande
return(list(c(dX, dY, dZ)))
a le même ordre que la définition des variables d'état
yini <- c(X = 1, Y = 1, Z = 1)
Le modèle de Lorenz
Le modèle de Lorenz décrit la dynamique de trois variables d'état, X, Y et Z. Les équations du modèle sont:
Les conditions initiales sont:
et a, b et c sont trois paramètres avec
library(deSolve)
## -----------------------------------------------------------------------------
## Define R-function
## ----------------------------------------------------------------------------
Lorenz <- function (t, y, parms) {
with(as.list(c(y, parms)), {
dX <- a * X + Y * Z
dY <- b * (Y - Z)
dZ <- -X * Y + c * Y - Z
return(list(c(dX, dY, dZ)))
})
}
## -----------------------------------------------------------------------------
## Define parameters and variables
## -----------------------------------------------------------------------------
parms <- c(a = -8/3, b = -10, c = 28)
yini <- c(X = 1, Y = 1, Z = 1)
times <- seq(from = 0, to = 100, by = 0.01)
## -----------------------------------------------------------------------------
## Solve the ODEs
## -----------------------------------------------------------------------------
out <- ode(y = yini, times = times, func = Lorenz, parms = parms)
## -----------------------------------------------------------------------------
## Plot the results
## -----------------------------------------------------------------------------
plot(out, lwd = 2)
plot(out[,"X"], out[,"Y"],
type = "l", xlab = "X",
ylab = "Y", main = "butterfly")
Lotka-Volterra ou: Prey vs. prédateur
library(deSolve)
## -----------------------------------------------------------------------------
## Define R-function
## -----------------------------------------------------------------------------
LV <- function(t, y, parms) {
with(as.list(c(y, parms)), {
dP <- rG * P * (1 - P/K) - rI * P * C
dC <- rI * P * C * AE - rM * C
return(list(c(dP, dC), sum = C+P))
})
}
## -----------------------------------------------------------------------------
## Define parameters and variables
## -----------------------------------------------------------------------------
parms <- c(rI = 0.2, rG = 1.0, rM = 0.2, AE = 0.5, K = 10)
yini <- c(P = 1, C = 2)
times <- seq(from = 0, to = 200, by = 1)
## -----------------------------------------------------------------------------
## Solve the ODEs
## -----------------------------------------------------------------------------
out <- ode(y = yini, times = times, func = LV, parms = parms)
## -----------------------------------------------------------------------------
## Plot the results
## -----------------------------------------------------------------------------
matplot(out[ ,1], out[ ,2:4], type = "l", xlab = "time", ylab = "Conc",
main = "Lotka-Volterra", lwd = 2)
legend("topright", c("prey", "predator", "sum"), col = 1:3, lty = 1:3)
ODE dans les langages compilés - définition en R
library(deSolve)
## -----------------------------------------------------------------------------
## Define parameters and variables
## -----------------------------------------------------------------------------
eps <- 0.01;
M <- 10
k <- M * eps^2/2
L <- 1
L0 <- 0.5
r <- 0.1
w <- 10
g <- 1
parameter <- c(eps = eps, M = M, k = k, L = L, L0 = L0, r = r, w = w, g = g)
yini <- c(xl = 0, yl = L0, xr = L, yr = L0,
ul = -L0/L, vl = 0,
ur = -L0/L, vr = 0,
lam1 = 0, lam2 = 0)
times <- seq(from = 0, to = 3, by = 0.01)
## -----------------------------------------------------------------------------
## Define R-function
## -----------------------------------------------------------------------------
caraxis_R <- function(t, y, parms) {
with(as.list(c(y, parms)), {
yb <- r * sin(w * t)
xb <- sqrt(L * L - yb * yb)
Ll <- sqrt(xl^2 + yl^2)
Lr <- sqrt((xr - xb)^2 + (yr - yb)^2)
dxl <- ul; dyl <- vl; dxr <- ur; dyr <- vr
dul <- (L0-Ll) * xl/Ll + 2 * lam2 * (xl-xr) + lam1*xb
dvl <- (L0-Ll) * yl/Ll + 2 * lam2 * (yl-yr) + lam1*yb - k * g
dur <- (L0-Lr) * (xr-xb)/Lr - 2 * lam2 * (xl-xr)
dvr <- (L0-Lr) * (yr-yb)/Lr - 2 * lam2 * (yl-yr) - k * g
c1 <- xb * xl + yb * yl
c2 <- (xl - xr)^2 + (yl - yr)^2 - L * L
return(list(c(dxl, dyl, dxr, dyr, dul, dvl, dur, dvr, c1, c2)))
})
}
ODE dans les langages compilés - définition en C
sink("caraxis_C.c")
cat("
/* suitable names for parameters and state variables */
#include <R.h>
#include <math.h>
static double parms[8];
#define eps parms[0]
#define m parms[1]
#define k parms[2]
#define L parms[3]
#define L0 parms[4]
#define r parms[5]
#define w parms[6]
#define g parms[7]
/*----------------------------------------------------------------------
initialising the parameter common block
----------------------------------------------------------------------
*/
void init_C(void (* daeparms)(int *, double *)) {
int N = 8;
daeparms(&N, parms);
}
/* Compartments */
#define xl y[0]
#define yl y[1]
#define xr y[2]
#define yr y[3]
#define lam1 y[8]
#define lam2 y[9]
/*----------------------------------------------------------------------
the residual function
----------------------------------------------------------------------
*/
void caraxis_C (int *neq, double *t, double *y, double *ydot,
double *yout, int* ip)
{
double yb, xb, Lr, Ll;
yb = r * sin(w * *t) ;
xb = sqrt(L * L - yb * yb);
Ll = sqrt(xl * xl + yl * yl) ;
Lr = sqrt((xr-xb)*(xr-xb) + (yr-yb)*(yr-yb));
ydot[0] = y[4];
ydot[1] = y[5];
ydot[2] = y[6];
ydot[3] = y[7];
ydot[4] = (L0-Ll) * xl/Ll + lam1*xb + 2*lam2*(xl-xr) ;
ydot[5] = (L0-Ll) * yl/Ll + lam1*yb + 2*lam2*(yl-yr) - k*g;
ydot[6] = (L0-Lr) * (xr-xb)/Lr - 2*lam2*(xl-xr) ;
ydot[7] = (L0-Lr) * (yr-yb)/Lr - 2*lam2*(yl-yr) - k*g ;
ydot[8] = xb * xl + yb * yl;
ydot[9] = (xl-xr) * (xl-xr) + (yl-yr) * (yl-yr) - L*L;
}
", fill = TRUE)
sink()
system("R CMD SHLIB caraxis_C.c")
dyn.load(paste("caraxis_C", .Platform$dynlib.ext, sep = ""))
dllname_C <- dyn.load(paste("caraxis_C", .Platform$dynlib.ext, sep = ""))[[1]]
ODE dans les langages compilés - définition dans fortran
sink("caraxis_fortran.f")
cat("
c----------------------------------------------------------------
c Initialiser for parameter common block
c----------------------------------------------------------------
subroutine init_fortran(daeparms)
external daeparms
integer, parameter :: N = 8
double precision parms(N)
common /myparms/parms
call daeparms(N, parms)
return
end
c----------------------------------------------------------------
c rate of change
c----------------------------------------------------------------
subroutine caraxis_fortran(neq, t, y, ydot, out, ip)
implicit none
integer neq, IP(*)
double precision t, y(neq), ydot(neq), out(*)
double precision eps, M, k, L, L0, r, w, g
common /myparms/ eps, M, k, L, L0, r, w, g
double precision xl, yl, xr, yr, ul, vl, ur, vr, lam1, lam2
double precision yb, xb, Ll, Lr, dxl, dyl, dxr, dyr
double precision dul, dvl, dur, dvr, c1, c2
c expand state variables
xl = y(1)
yl = y(2)
xr = y(3)
yr = y(4)
ul = y(5)
vl = y(6)
ur = y(7)
vr = y(8)
lam1 = y(9)
lam2 = y(10)
yb = r * sin(w * t)
xb = sqrt(L * L - yb * yb)
Ll = sqrt(xl**2 + yl**2)
Lr = sqrt((xr - xb)**2 + (yr - yb)**2)
dxl = ul
dyl = vl
dxr = ur
dyr = vr
dul = (L0-Ll) * xl/Ll + 2 * lam2 * (xl-xr) + lam1*xb
dvl = (L0-Ll) * yl/Ll + 2 * lam2 * (yl-yr) + lam1*yb - k*g
dur = (L0-Lr) * (xr-xb)/Lr - 2 * lam2 * (xl-xr)
dvr = (L0-Lr) * (yr-yb)/Lr - 2 * lam2 * (yl-yr) - k*g
c1 = xb * xl + yb * yl
c2 = (xl - xr)**2 + (yl - yr)**2 - L * L
c function values in ydot
ydot(1) = dxl
ydot(2) = dyl
ydot(3) = dxr
ydot(4) = dyr
ydot(5) = dul
ydot(6) = dvl
ydot(7) = dur
ydot(8) = dvr
ydot(9) = c1
ydot(10) = c2
return
end
", fill = TRUE)
sink()
system("R CMD SHLIB caraxis_fortran.f")
dyn.load(paste("caraxis_fortran", .Platform$dynlib.ext, sep = ""))
dllname_fortran <- dyn.load(paste("caraxis_fortran", .Platform$dynlib.ext, sep = ""))[[1]]
ODE dans les langages compilés - un test de performances
Lorsque vous avez compilé et chargé le code dans les trois exemples précédents (ODE dans les langages compilés - définition dans R, ODE dans les langages compilés - définition dans C et ODE dans les langages compilés - définition dans fortran), vous pouvez exécuter un test de performances.
library(microbenchmark)
R <- function(){
out <- ode(y = yini, times = times, func = caraxis_R,
parms = parameter)
}
C <- function(){
out <- ode(y = yini, times = times, func = "caraxis_C",
initfunc = "init_C", parms = parameter,
dllname = dllname_C)
}
fortran <- function(){
out <- ode(y = yini, times = times, func = "caraxis_fortran",
initfunc = "init_fortran", parms = parameter,
dllname = dllname_fortran)
}
Vérifiez si les résultats sont égaux:
all.equal(tail(R()), tail(fortran()))
all.equal(R()[,2], fortran()[,2])
all.equal(R()[,2], C()[,2])
Faites un benchmark (Note: sur votre machine, les temps sont bien sûr différents):
bench <- microbenchmark::microbenchmark(
R(),
fortran(),
C(),
times = 1000
)
summary(bench)
expr min lq mean median uq max neval cld
R() 31508.928 33651.541 36747.8733 36062.2475 37546.8025 132996.564 1000 b
fortran() 570.674 596.700 686.1084 637.4605 730.1775 4256.555 1000 a
C() 562.163 590.377 673.6124 625.0700 723.8460 5914.347 1000 a
Nous voyons clairement que R est lent contrairement à la définition en C et en fortran. Pour les gros modèles, cela vaut la peine de traduire le problème dans un langage compilé. Le paquet cOde
est une possibilité de traduire les ODE de R vers C.