algorithm
Résolution d'équations
Recherche…
Équation linéaire
Il existe deux classes de méthodes pour résoudre les équations linéaires:
Méthodes directes : Les méthodes courantes ont pour caractéristiques communes de transformer l'équation originale en équations équivalentes qui peuvent être résolues plus facilement, ce qui signifie que nous obtenons une résolution directement à partir d'une équation.
Méthode itérative : Méthodes itératives ou indirectes: commencez par deviner la solution, puis affinez la solution jusqu'à ce qu'un certain critère de convergence soit atteint. Les méthodes itératives sont généralement moins efficaces que les méthodes directes car un grand nombre d'opérations sont nécessaires. Exemple - Méthode d'itération de Jacobi, méthode d'itération de Gauss-Seidal.
Mise en œuvre en C-
//Implementation of Jacobi's Method
void JacobisMethod(int n, double x[n], double b[n], double a[n][n]){
double Nx[n]; //modified form of variables
int rootFound=0; //flag
int i, j;
while(!rootFound){
for(i=0; i<n; i++){ //calculation
Nx[i]=b[i];
for(j=0; j<n; j++){
if(i!=j) Nx[i] = Nx[i]-a[i][j]*x[j];
}
Nx[i] = Nx[i] / a[i][i];
}
rootFound=1; //verification
for(i=0; i<n; i++){
if(!( (Nx[i]-x[i])/x[i] > -0.000001 && (Nx[i]-x[i])/x[i] < 0.000001 )){
rootFound=0;
break;
}
}
for(i=0; i<n; i++){ //evaluation
x[i]=Nx[i];
}
}
return ;
}
//Implementation of Gauss-Seidal Method
void GaussSeidalMethod(int n, double x[n], double b[n], double a[n][n]){
double Nx[n]; //modified form of variables
int rootFound=0; //flag
int i, j;
for(i=0; i<n; i++){ //initialization
Nx[i]=x[i];
}
while(!rootFound){
for(i=0; i<n; i++){ //calculation
Nx[i]=b[i];
for(j=0; j<n; j++){
if(i!=j) Nx[i] = Nx[i]-a[i][j]*Nx[j];
}
Nx[i] = Nx[i] / a[i][i];
}
rootFound=1; //verification
for(i=0; i<n; i++){
if(!( (Nx[i]-x[i])/x[i] > -0.000001 && (Nx[i]-x[i])/x[i] < 0.000001 )){
rootFound=0;
break;
}
}
for(i=0; i<n; i++){ //evaluation
x[i]=Nx[i];
}
}
return ;
}
//Print array with comma separation
void print(int n, double x[n]){
int i;
for(i=0; i<n; i++){
printf("%lf, ", x[i]);
}
printf("\n\n");
return ;
}
int main(){
//equation initialization
int n=3; //number of variables
double x[n]; //variables
double b[n], //constants
a[n][n]; //arguments
//assign values
a[0][0]=8; a[0][1]=2; a[0][2]=-2; b[0]=8; //8x₁+2x₂-2x₃+8=0
a[1][0]=1; a[1][1]=-8; a[1][2]=3; b[1]=-4; //x₁-8x₂+3x₃-4=0
a[2][0]=2; a[2][1]=1; a[2][2]=9; b[2]=12; //2x₁+x₂+9x₃+12=0
int i;
for(i=0; i<n; i++){ //initialization
x[i]=0;
}
JacobisMethod(n, x, b, a);
print(n, x);
for(i=0; i<n; i++){ //initialization
x[i]=0;
}
GaussSeidalMethod(n, x, b, a);
print(n, x);
return 0;
}
Équation non linéaire
Une équation du type f(x)=0
est soit algébrique soit transcendantale. Ces types d’équations peuvent être résolus en utilisant deux types de méthodes:
Méthode directe : Cette méthode donne la valeur exacte de toutes les racines directement dans un nombre fini d'étapes.
Méthode indirecte ou itérative : Les méthodes itératives sont les mieux adaptées aux programmes informatiques pour résoudre une équation. Il est basé sur le concept d'approximation successive. Dans la méthode itérative, il existe deux manières de résoudre une équation -
Méthode Bracketing : Nous prenons deux points initiaux où la racine se situe entre eux. Exemple: Méthode de bisection, méthode de la fausse position.
Méthode Open End : Nous prenons une ou deux valeurs initiales où la racine peut être n'importe où. Exemple - Méthode de Newton-Raphson, méthode d'approximation successive, méthode sécante.
Mise en œuvre en C-
/// Here define different functions to work with
#define f(x) ( ((x)*(x)*(x)) - (x) - 2 )
#define f2(x) ( (3*(x)*(x)) - 1 )
#define g(x) ( cbrt( (x) + 2 ) )
/**
* Takes two initial values and shortens the distance by both side.
**/
double BisectionMethod(){
double root=0;
double a=1, b=2;
double c=0;
int loopCounter=0;
if(f(a)*f(b) < 0){
while(1){
loopCounter++;
c=(a+b)/2;
if(f(c)<0.00001 && f(c)>-0.00001){
root=c;
break;
}
if((f(a))*(f(c)) < 0){
b=c;
}else{
a=c;
}
}
}
printf("It took %d loops.\n", loopCounter);
return root;
}
/**
* Takes two initial values and shortens the distance by single side.
**/
double FalsePosition(){
double root=0;
double a=1, b=2;
double c=0;
int loopCounter=0;
if(f(a)*f(b) < 0){
while(1){
loopCounter++;
c=(a*f(b) - b*f(a)) / (f(b) - f(a));
/*/printf("%lf\t %lf \n", c, f(c));/**////test
if(f(c)<0.00001 && f(c)>-0.00001){
root=c;
break;
}
if((f(a))*(f(c)) < 0){
b=c;
}else{
a=c;
}
}
}
printf("It took %d loops.\n", loopCounter);
return root;
}
/**
* Uses one initial value and gradually takes that value near to the real one.
**/
double NewtonRaphson(){
double root=0;
double x1=1;
double x2=0;
int loopCounter=0;
while(1){
loopCounter++;
x2 = x1 - (f(x1)/f2(x1));
/*/printf("%lf \t %lf \n", x2, f(x2));/**////test
if(f(x2)<0.00001 && f(x2)>-0.00001){
root=x2;
break;
}
x1=x2;
}
printf("It took %d loops.\n", loopCounter);
return root;
}
/**
* Uses one initial value and gradually takes that value near to the real one.
**/
double FixedPoint(){
double root=0;
double x=1;
int loopCounter=0;
while(1){
loopCounter++;
if( (x-g(x)) <0.00001 && (x-g(x)) >-0.00001){
root = x;
break;
}
/*/printf("%lf \t %lf \n", g(x), x-(g(x)));/**////test
x=g(x);
}
printf("It took %d loops.\n", loopCounter);
return root;
}
/**
* uses two initial values & both value approaches to the root.
**/
double Secant(){
double root=0;
double x0=1;
double x1=2;
double x2=0;
int loopCounter=0;
while(1){
loopCounter++;
/*/printf("%lf \t %lf \t %lf \n", x0, x1, f(x1));/**////test
if(f(x1)<0.00001 && f(x1)>-0.00001){
root=x1;
break;
}
x2 = ((x0*f(x1))-(x1*f(x0))) / (f(x1)-f(x0));
x0=x1;
x1=x2;
}
printf("It took %d loops.\n", loopCounter);
return root;
}
int main(){
double root;
root = BisectionMethod();
printf("Using Bisection Method the root is: %lf \n\n", root);
root = FalsePosition();
printf("Using False Position Method the root is: %lf \n\n", root);
root = NewtonRaphson();
printf("Using Newton-Raphson Method the root is: %lf \n\n", root);
root = FixedPoint();
printf("Using Fixed Point Method the root is: %lf \n\n", root);
root = Secant();
printf("Using Secant Method the root is: %lf \n\n", root);
return 0;
}