Buscar..


Ecuación lineal

Hay dos clases de métodos para resolver ecuaciones lineales:

  1. Métodos directos : las características comunes de los métodos directos son que transforman la ecuación original en ecuaciones equivalentes que se pueden resolver más fácilmente, lo que significa que podemos resolver directamente de una ecuación.

  2. Método iterativo : Métodos iterativos o indirectos, comience con una conjetura de la solución y luego afine repetidamente la solución hasta que se alcance un cierto criterio de convergencia. Los métodos iterativos son generalmente menos eficientes que los métodos directos porque requieren un gran número de operaciones. Ejemplo: Método de iteración de Jacobi, Método de iteración de Gauss-Seidal.

Implementación en C-

//Implementation of Jacobi's Method
void JacobisMethod(int n, double x[n], double b[n], double a[n][n]){
    double Nx[n]; //modified form of variables
    int rootFound=0; //flag

    int i, j;
    while(!rootFound){
        for(i=0; i<n; i++){              //calculation
            Nx[i]=b[i];

            for(j=0; j<n; j++){
                if(i!=j) Nx[i] = Nx[i]-a[i][j]*x[j];
            }
            Nx[i] = Nx[i] / a[i][i];
        }

        rootFound=1;                    //verification
        for(i=0; i<n; i++){
            if(!( (Nx[i]-x[i])/x[i] > -0.000001 && (Nx[i]-x[i])/x[i] < 0.000001 )){
                rootFound=0;
                break;
            }
        }

        for(i=0; i<n; i++){             //evaluation
            x[i]=Nx[i];
        }
    }

    return ;
}

//Implementation of Gauss-Seidal Method
void GaussSeidalMethod(int n, double x[n], double b[n], double a[n][n]){
    double Nx[n]; //modified form of variables
    int rootFound=0; //flag

    int i, j;
    for(i=0; i<n; i++){                  //initialization
        Nx[i]=x[i];
    }

    while(!rootFound){
        for(i=0; i<n; i++){              //calculation
            Nx[i]=b[i];

            for(j=0; j<n; j++){
                if(i!=j) Nx[i] = Nx[i]-a[i][j]*Nx[j];
            }
            Nx[i] = Nx[i] / a[i][i];
        }

        rootFound=1;                    //verification
        for(i=0; i<n; i++){
            if(!( (Nx[i]-x[i])/x[i] > -0.000001 && (Nx[i]-x[i])/x[i] < 0.000001 )){
                rootFound=0;
                break;
            }
        }

        for(i=0; i<n; i++){             //evaluation
            x[i]=Nx[i];
        }
    }

    return ;
}

//Print array with comma separation
void print(int n, double x[n]){
    int i;
    for(i=0; i<n; i++){
        printf("%lf, ", x[i]);
    }
    printf("\n\n");

    return ;
}

int main(){
    //equation initialization
    int n=3;    //number of variables

    double x[n];    //variables

    double b[n],    //constants
        a[n][n];    //arguments

    //assign values
    a[0][0]=8; a[0][1]=2; a[0][2]=-2; b[0]=8;    //8x₁+2x₂-2x₃+8=0
    a[1][0]=1; a[1][1]=-8; a[1][2]=3; b[1]=-4;   //x₁-8x₂+3x₃-4=0
    a[2][0]=2; a[2][1]=1; a[2][2]=9; b[2]=12;    //2x₁+x₂+9x₃+12=0


    int i;

    for(i=0; i<n; i++){                         //initialization
        x[i]=0;
    }
    JacobisMethod(n, x, b, a);
    print(n, x);


    for(i=0; i<n; i++){                         //initialization
        x[i]=0;
    }
    GaussSeidalMethod(n, x, b, a);
    print(n, x);

    return 0;
}

Ecuación no lineal

Una ecuación del tipo f(x)=0 es algebraica o trascendental. Estos tipos de ecuaciones se pueden resolver utilizando dos tipos de métodos:

  1. Método directo : este método proporciona el valor exacto de todas las raíces directamente en un número finito de pasos.

  2. Método indirecto o iterativo : los métodos iterativos son los más adecuados para que los programas de computadora resuelvan una ecuación. Se basa en el concepto de aproximación sucesiva. En el método iterativo hay dos formas de resolver una ecuación:

    • Método de horquillado : Tomamos dos puntos iniciales donde la raíz se encuentra entre ellos. Ejemplo: Método de bisección, Método de posición falsa.

    • Método de final abierto : Tomamos uno o dos valores iniciales donde la raíz puede estar en cualquier lugar. Ejemplo: método de Newton-Raphson, método de aproximación sucesiva, método secante.

Implementación en C-

/// Here define different functions to work with
#define f(x) ( ((x)*(x)*(x)) - (x) - 2 )
#define f2(x) ( (3*(x)*(x)) - 1 )
#define g(x) ( cbrt( (x) + 2 ) )


/**
* Takes two initial values and shortens the distance by both side.
**/
double BisectionMethod(){
    double root=0;

    double a=1, b=2;
    double c=0;

    int loopCounter=0;
    if(f(a)*f(b) < 0){
        while(1){
            loopCounter++;
            c=(a+b)/2;

            if(f(c)<0.00001 && f(c)>-0.00001){
                root=c;
                break;
            }

            if((f(a))*(f(c)) < 0){
                b=c;
            }else{
                a=c;
            }

        }
    }
    printf("It took %d loops.\n", loopCounter);

    return root;
}

/**
* Takes two initial values and shortens the distance by single side.
**/
double FalsePosition(){
    double root=0;

    double a=1, b=2;
    double c=0;

    int loopCounter=0;
    if(f(a)*f(b) < 0){
        while(1){
            loopCounter++;

            c=(a*f(b) - b*f(a)) / (f(b) - f(a));

            /*/printf("%lf\t %lf \n", c, f(c));/**////test
            if(f(c)<0.00001 && f(c)>-0.00001){
                root=c;
                break;
            }

            if((f(a))*(f(c)) < 0){
                b=c;
            }else{
                a=c;
            }
        }
    }
    printf("It took %d loops.\n", loopCounter);

    return root;
}

/**
* Uses one initial value and gradually takes that value near to the real one.
**/
double NewtonRaphson(){
    double root=0;

    double x1=1;
    double x2=0;

    int loopCounter=0;
    while(1){
        loopCounter++;

        x2 = x1 - (f(x1)/f2(x1));
        /*/printf("%lf \t %lf \n", x2, f(x2));/**////test

        if(f(x2)<0.00001 && f(x2)>-0.00001){
            root=x2;
            break;
        }

        x1=x2;
    }
    printf("It took %d loops.\n", loopCounter);

    return root;
}

/**
* Uses one initial value and gradually takes that value near to the real one.
**/
double FixedPoint(){
    double root=0;
    double x=1;

    int loopCounter=0;
    while(1){
        loopCounter++;

        if( (x-g(x)) <0.00001 && (x-g(x)) >-0.00001){
            root = x;
            break;
        }

        /*/printf("%lf \t %lf \n", g(x), x-(g(x)));/**////test

        x=g(x);
    }
    printf("It took %d loops.\n", loopCounter);

    return root;
}

/**
* uses two initial values & both value approaches to the root.
**/
double Secant(){
    double root=0;

    double x0=1;
    double x1=2;
    double x2=0;

    int loopCounter=0;
    while(1){
        loopCounter++;

        /*/printf("%lf \t %lf \t %lf \n", x0, x1, f(x1));/**////test

        if(f(x1)<0.00001 && f(x1)>-0.00001){
            root=x1;
            break;
        }

        x2 = ((x0*f(x1))-(x1*f(x0))) / (f(x1)-f(x0));

        x0=x1;
        x1=x2;
    }
    printf("It took %d loops.\n", loopCounter);

    return root;
}


int main(){
    double root;

    root = BisectionMethod();
    printf("Using Bisection Method the root is: %lf \n\n", root);
    
    root = FalsePosition();
    printf("Using False Position Method the root is: %lf \n\n", root);
    
    root = NewtonRaphson();
    printf("Using Newton-Raphson Method the root is: %lf \n\n", root);
    
    root = FixedPoint();
    printf("Using Fixed Point Method the root is: %lf \n\n", root);
    
    root = Secant();
    printf("Using Secant Method the root is: %lf \n\n", root);

    return 0;
}


Modified text is an extract of the original Stack Overflow Documentation
Licenciado bajo CC BY-SA 3.0
No afiliado a Stack Overflow