Zoeken…


Lineaire vergelijking

Er zijn twee klassen methoden voor het oplossen van lineaire vergelijkingen:

  1. Directe methoden : gemeenschappelijke kenmerken van directe methoden zijn dat ze de oorspronkelijke vergelijking omzetten in equivalente vergelijkingen die gemakkelijker kunnen worden opgelost, wat betekent dat we rechtstreeks uit een vergelijking worden opgelost.

  2. Iteratieve methode : Iteratieve of indirecte methoden, begin met een schatting van de oplossing en verfijn vervolgens de oplossing herhaaldelijk totdat een bepaald convergentiecriterium is bereikt. Iteratieve methoden zijn over het algemeen minder efficiënt dan directe methoden omdat een groot aantal bewerkingen vereist is. Voorbeeld - Jacobi's Iteratiemethode, Gauss-Seidal Iteratiemethode.

Implementatie in C-

//Implementation of Jacobi's Method
void JacobisMethod(int n, double x[n], double b[n], double a[n][n]){
    double Nx[n]; //modified form of variables
    int rootFound=0; //flag

    int i, j;
    while(!rootFound){
        for(i=0; i<n; i++){              //calculation
            Nx[i]=b[i];

            for(j=0; j<n; j++){
                if(i!=j) Nx[i] = Nx[i]-a[i][j]*x[j];
            }
            Nx[i] = Nx[i] / a[i][i];
        }

        rootFound=1;                    //verification
        for(i=0; i<n; i++){
            if(!( (Nx[i]-x[i])/x[i] > -0.000001 && (Nx[i]-x[i])/x[i] < 0.000001 )){
                rootFound=0;
                break;
            }
        }

        for(i=0; i<n; i++){             //evaluation
            x[i]=Nx[i];
        }
    }

    return ;
}

//Implementation of Gauss-Seidal Method
void GaussSeidalMethod(int n, double x[n], double b[n], double a[n][n]){
    double Nx[n]; //modified form of variables
    int rootFound=0; //flag

    int i, j;
    for(i=0; i<n; i++){                  //initialization
        Nx[i]=x[i];
    }

    while(!rootFound){
        for(i=0; i<n; i++){              //calculation
            Nx[i]=b[i];

            for(j=0; j<n; j++){
                if(i!=j) Nx[i] = Nx[i]-a[i][j]*Nx[j];
            }
            Nx[i] = Nx[i] / a[i][i];
        }

        rootFound=1;                    //verification
        for(i=0; i<n; i++){
            if(!( (Nx[i]-x[i])/x[i] > -0.000001 && (Nx[i]-x[i])/x[i] < 0.000001 )){
                rootFound=0;
                break;
            }
        }

        for(i=0; i<n; i++){             //evaluation
            x[i]=Nx[i];
        }
    }

    return ;
}

//Print array with comma separation
void print(int n, double x[n]){
    int i;
    for(i=0; i<n; i++){
        printf("%lf, ", x[i]);
    }
    printf("\n\n");

    return ;
}

int main(){
    //equation initialization
    int n=3;    //number of variables

    double x[n];    //variables

    double b[n],    //constants
        a[n][n];    //arguments

    //assign values
    a[0][0]=8; a[0][1]=2; a[0][2]=-2; b[0]=8;    //8x₁+2x₂-2x₃+8=0
    a[1][0]=1; a[1][1]=-8; a[1][2]=3; b[1]=-4;   //x₁-8x₂+3x₃-4=0
    a[2][0]=2; a[2][1]=1; a[2][2]=9; b[2]=12;    //2x₁+x₂+9x₃+12=0


    int i;

    for(i=0; i<n; i++){                         //initialization
        x[i]=0;
    }
    JacobisMethod(n, x, b, a);
    print(n, x);


    for(i=0; i<n; i++){                         //initialization
        x[i]=0;
    }
    GaussSeidalMethod(n, x, b, a);
    print(n, x);

    return 0;
}

Niet-lineaire vergelijking

Een vergelijking van het type f(x)=0 is algebraïsch of transcendentaal. Dit soort vergelijkingen kan worden opgelost met behulp van twee soorten methoden-

  1. Directe methode : deze methode geeft de exacte waarde van alle wortels direct in een eindig aantal stappen.

  2. Indirecte of Iteratieve methode : Iteratieve methoden zijn het meest geschikt voor computerprogramma's om een vergelijking op te lossen. Het is gebaseerd op het concept van opeenvolgende benadering. In Iterative Method zijn er twee manieren om een vergelijking op te lossen-

    • Bracketing-methode : We nemen twee beginpunten waar de wortel ertussen ligt. Voorbeeld - Bisectiemethode, valse positiemethode.

    • Open End-methode : we nemen een of twee beginwaarden waarbij de root overal kan zijn. Voorbeeld - Newton-Raphson-methode, opeenvolgende benaderingsmethode, Secant-methode.

Implementatie in C-

/// Here define different functions to work with
#define f(x) ( ((x)*(x)*(x)) - (x) - 2 )
#define f2(x) ( (3*(x)*(x)) - 1 )
#define g(x) ( cbrt( (x) + 2 ) )


/**
* Takes two initial values and shortens the distance by both side.
**/
double BisectionMethod(){
    double root=0;

    double a=1, b=2;
    double c=0;

    int loopCounter=0;
    if(f(a)*f(b) < 0){
        while(1){
            loopCounter++;
            c=(a+b)/2;

            if(f(c)<0.00001 && f(c)>-0.00001){
                root=c;
                break;
            }

            if((f(a))*(f(c)) < 0){
                b=c;
            }else{
                a=c;
            }

        }
    }
    printf("It took %d loops.\n", loopCounter);

    return root;
}

/**
* Takes two initial values and shortens the distance by single side.
**/
double FalsePosition(){
    double root=0;

    double a=1, b=2;
    double c=0;

    int loopCounter=0;
    if(f(a)*f(b) < 0){
        while(1){
            loopCounter++;

            c=(a*f(b) - b*f(a)) / (f(b) - f(a));

            /*/printf("%lf\t %lf \n", c, f(c));/**////test
            if(f(c)<0.00001 && f(c)>-0.00001){
                root=c;
                break;
            }

            if((f(a))*(f(c)) < 0){
                b=c;
            }else{
                a=c;
            }
        }
    }
    printf("It took %d loops.\n", loopCounter);

    return root;
}

/**
* Uses one initial value and gradually takes that value near to the real one.
**/
double NewtonRaphson(){
    double root=0;

    double x1=1;
    double x2=0;

    int loopCounter=0;
    while(1){
        loopCounter++;

        x2 = x1 - (f(x1)/f2(x1));
        /*/printf("%lf \t %lf \n", x2, f(x2));/**////test

        if(f(x2)<0.00001 && f(x2)>-0.00001){
            root=x2;
            break;
        }

        x1=x2;
    }
    printf("It took %d loops.\n", loopCounter);

    return root;
}

/**
* Uses one initial value and gradually takes that value near to the real one.
**/
double FixedPoint(){
    double root=0;
    double x=1;

    int loopCounter=0;
    while(1){
        loopCounter++;

        if( (x-g(x)) <0.00001 && (x-g(x)) >-0.00001){
            root = x;
            break;
        }

        /*/printf("%lf \t %lf \n", g(x), x-(g(x)));/**////test

        x=g(x);
    }
    printf("It took %d loops.\n", loopCounter);

    return root;
}

/**
* uses two initial values & both value approaches to the root.
**/
double Secant(){
    double root=0;

    double x0=1;
    double x1=2;
    double x2=0;

    int loopCounter=0;
    while(1){
        loopCounter++;

        /*/printf("%lf \t %lf \t %lf \n", x0, x1, f(x1));/**////test

        if(f(x1)<0.00001 && f(x1)>-0.00001){
            root=x1;
            break;
        }

        x2 = ((x0*f(x1))-(x1*f(x0))) / (f(x1)-f(x0));

        x0=x1;
        x1=x2;
    }
    printf("It took %d loops.\n", loopCounter);

    return root;
}


int main(){
    double root;

    root = BisectionMethod();
    printf("Using Bisection Method the root is: %lf \n\n", root);
    
    root = FalsePosition();
    printf("Using False Position Method the root is: %lf \n\n", root);
    
    root = NewtonRaphson();
    printf("Using Newton-Raphson Method the root is: %lf \n\n", root);
    
    root = FixedPoint();
    printf("Using Fixed Point Method the root is: %lf \n\n", root);
    
    root = Secant();
    printf("Using Secant Method the root is: %lf \n\n", root);

    return 0;
}


Modified text is an extract of the original Stack Overflow Documentation
Licentie onder CC BY-SA 3.0
Niet aangesloten bij Stack Overflow