Haskell Language
Los funtores comunes como base de los comonads cofree.
Buscar..
Cofree Empty ~~ Empty
Dado
data Empty a
tenemos
data Cofree Empty a
-- = a :< ... not possible!
Cofree (Const c) ~~ escritor c
Dado
data Const c a = Const c
tenemos
data Cofree (Const c) a
= a :< Const c
que es isomorfo para
data Writer c a = Writer c a
Cofree Identity ~~ Stream
Dado
data Identity a = Identity a
tenemos
data Cofree Identity a
= a :< Identity (Cofree Identity a)
que es isomorfo para
data Stream a = Stream a (Stream a)
Cofree Maybe ~~ NonEmpty
Dado
data Maybe a = Just a
| Nothing
tenemos
data Cofree Maybe a
= a :< Just (Cofree Maybe a)
| a :< Nothing
que es isomorfo para
data NonEmpty a
= NECons a (NonEmpty a)
| NESingle a
Cofree (Writer w) ~~ WriterT w Stream
Dado
data Writer w a = Writer w a
tenemos
data Cofree (Writer w) a
= a :< (w, Cofree (Writer w) a)
que es equivalente a
data Stream (w,a)
= Stream (w,a) (Stream (w,a))
que puede escribirse correctamente como WriterT w Stream
con
data WriterT w m a = WriterT (m (w,a))
Cofree (Either e) ~~ NonEmptyT (Writer e)
Dado
data Either e a = Left e
| Right a
tenemos
data Cofree (Either e) a
= a :< Left e
| a :< Right (Cofree (Either e) a)
que es isomorfo para
data Hospitable e a
= Sorry_AllIHaveIsThis_Here'sWhy a e
| EatThis a (Hospitable e a)
o, si se compromete a solo evaluar el registro después del resultado completo, NonEmptyT (Writer e) a
con
data NonEmptyT (Writer e) a = NonEmptyT (e,a,[a])
Cofree (Lector x) ~~ Moore x
Dado
data Reader x a = Reader (x -> a)
tenemos
data Cofree (Reader x) a
= a :< (x -> Cofree (Reader x) a)
que es isomorfo para
data Plant x a
= Plant a (x -> Plant x a)
También conocido como máquina de Moore .
Modified text is an extract of the original Stack Overflow Documentation
Licenciado bajo CC BY-SA 3.0
No afiliado a Stack Overflow