Sök…


Skrapa data för att bygga N-gram Word Clouds

Följande exempel använder tm text mining-paketet för att skrapa och gruva textdata från webben för att bygga ordmoln med symbolisk skuggning och beställning.

require(RWeka)
require(tau)
require(tm)
require(tm.plugin.webmining)
require(wordcloud)

# Scrape Google Finance ---------------------------------------------------
googlefinance <- WebCorpus(GoogleFinanceSource("NASDAQ:LFVN"))
 
# Scrape Google News ------------------------------------------------------
lv.googlenews <- WebCorpus(GoogleNewsSource("LifeVantage"))
p.googlenews  <- WebCorpus(GoogleNewsSource("Protandim"))
ts.googlenews <- WebCorpus(GoogleNewsSource("TrueScience"))
 
# Scrape NYTimes ----------------------------------------------------------
lv.nytimes <- WebCorpus(NYTimesSource(query = "LifeVantage", appid = nytimes_appid))
p.nytimes  <- WebCorpus(NYTimesSource("Protandim", appid = nytimes_appid))
ts.nytimes <- WebCorpus(NYTimesSource("TrueScience", appid = nytimes_appid))
 
# Scrape Reuters ----------------------------------------------------------
lv.reutersnews <- WebCorpus(ReutersNewsSource("LifeVantage"))
p.reutersnews  <- WebCorpus(ReutersNewsSource("Protandim"))
ts.reutersnews <- WebCorpus(ReutersNewsSource("TrueScience"))
 
# Scrape Yahoo! Finance ---------------------------------------------------
lv.yahoofinance <- WebCorpus(YahooFinanceSource("LFVN"))
 
# Scrape Yahoo! News ------------------------------------------------------
lv.yahoonews <- WebCorpus(YahooNewsSource("LifeVantage"))
p.yahoonews  <- WebCorpus(YahooNewsSource("Protandim"))
ts.yahoonews <- WebCorpus(YahooNewsSource("TrueScience"))
 
# Scrape Yahoo! Inplay ----------------------------------------------------
lv.yahooinplay <- WebCorpus(YahooInplaySource("LifeVantage"))

# Text Mining the Results -------------------------------------------------
corpus <- c(googlefinance, lv.googlenews, p.googlenews, ts.googlenews, lv.yahoofinance, lv.yahoonews, p.yahoonews,
ts.yahoonews, lv.yahooinplay) #lv.nytimes, p.nytimes, ts.nytimes,lv.reutersnews, p.reutersnews, ts.reutersnews,
 
inspect(corpus)
wordlist <- c("lfvn", "lifevantage", "protandim", "truescience", "company", "fiscal", "nasdaq")
 
ds0.1g <- tm_map(corpus, content_transformer(tolower))
ds1.1g <- tm_map(ds0.1g, content_transformer(removeWords), wordlist)
ds1.1g <- tm_map(ds1.1g, content_transformer(removeWords), stopwords("english"))
ds2.1g <- tm_map(ds1.1g, stripWhitespace)
ds3.1g <- tm_map(ds2.1g, removePunctuation)
ds4.1g <- tm_map(ds3.1g, stemDocument)
 
tdm.1g <- TermDocumentMatrix(ds4.1g)
dtm.1g <- DocumentTermMatrix(ds4.1g)

findFreqTerms(tdm.1g, 40)
findFreqTerms(tdm.1g, 60)
findFreqTerms(tdm.1g, 80)
findFreqTerms(tdm.1g, 100)
 
findAssocs(dtm.1g, "skin", .75)
findAssocs(dtm.1g, "scienc", .5)
findAssocs(dtm.1g, "product", .75) 
 
tdm89.1g <- removeSparseTerms(tdm.1g, 0.89)
tdm9.1g  <- removeSparseTerms(tdm.1g, 0.9)
tdm91.1g <- removeSparseTerms(tdm.1g, 0.91)
tdm92.1g <- removeSparseTerms(tdm.1g, 0.92)
 
tdm2.1g <- tdm92.1g
 
# Creates a Boolean matrix (counts # docs w/terms, not raw # terms)
tdm3.1g <- inspect(tdm2.1g)
tdm3.1g[tdm3.1g>=1] <- 1 
 
# Transform into a term-term adjacency matrix
termMatrix.1gram <- tdm3.1g %*% t(tdm3.1g)
 
# inspect terms numbered 5 to 10
termMatrix.1gram[5:10,5:10]
termMatrix.1gram[1:10,1:10]
 
# Create a WordCloud to Visualize the Text Data ---------------------------
notsparse <- tdm2.1g
m = as.matrix(notsparse)
v = sort(rowSums(m),decreasing=TRUE)
d = data.frame(word = names(v),freq=v)
 
# Create the word cloud
pal = brewer.pal(9,"BuPu")
wordcloud(words = d$word,
          freq = d$freq,
          scale = c(3,.8),
          random.order = F,
          colors = pal)

ange bildbeskrivning här

Notera användningen av random.order och en sekventiell pall från RColorBrewer, som gör det möjligt för programmeraren att fånga mer information i molnet genom att tilldela betydelse för ordning och färgning av termer.

Ovan är fallet på 1 gram.

Vi kan göra ett stort språng till n-gram ordmoln och därmed får vi se hur man gör nästan alla textbrytningsanalyser tillräckligt flexibla för att hantera n-gram genom att transformera vår TDM.

Den initiala svårigheten du stöter på med n-gram i R är att tm , det mest populära paketet för textbrytning, inte i sig stöder tokenisering av bi-gram eller n-gram. Tokenisering är processen att representera ett ord, en del av ett ord eller en grupp ord (eller symboler) som ett enda dataelement som kallas ett symbol.

Lyckligtvis har vi några hacks som gör att vi kan fortsätta använda tm med en uppgraderad tokenizer. Det finns mer än ett sätt att uppnå detta. Vi kan skriva vår egen enkla tokenizer med textcnt() från tau:

tokenize_ngrams <- function(x, n=3) return(rownames(as.data.frame(unclass(textcnt(x,method="string",n=n)))))

eller så kan vi åberopa RWeka tokenizer inom tm :

# BigramTokenize
BigramTokenizer <- function(x) NGramTokenizer(x, Weka_control(min = 2, max = 2))

Från denna punkt kan du fortsätta mycket som i fallet med 1 gram:

# Create an n-gram Word Cloud ----------------------------------------------
tdm.ng <- TermDocumentMatrix(ds5.1g, control = list(tokenize = BigramTokenizer))
dtm.ng <- DocumentTermMatrix(ds5.1g, control = list(tokenize = BigramTokenizer))
 
# Try removing sparse terms at a few different levels
tdm89.ng <- removeSparseTerms(tdm.ng, 0.89)
tdm9.ng  <- removeSparseTerms(tdm.ng, 0.9)
tdm91.ng <- removeSparseTerms(tdm.ng, 0.91)
tdm92.ng <- removeSparseTerms(tdm.ng, 0.92)

notsparse <- tdm91.ng
m = as.matrix(notsparse)
v = sort(rowSums(m),decreasing=TRUE)
d = data.frame(word = names(v),freq=v)
 
# Create the word cloud
pal = brewer.pal(9,"BuPu")
wordcloud(words = d$word,
          freq = d$freq,
          scale = c(3,.8),
          random.order = F,
          colors = pal)

ange bildbeskrivning här

Exemplet ovan återges med tillstånd från Hack-Rs datavetenskapliga blogg. Ytterligare kommentarer finns i den ursprungliga artikeln.



Modified text is an extract of the original Stack Overflow Documentation
Licensierat under CC BY-SA 3.0
Inte anslutet till Stack Overflow