Поиск…


Ускорение жесткой векторизации для циклов с Rcpp

Возьмем следующий цикл for-loopize, который создает вектор длины len где указан первый элемент ( first ), и каждый элемент x_i равен cos(x_{i-1} + 1) :

repeatedCosPlusOne <- function(first, len) {
  x <- numeric(len)
  x[1] <- first
  for (i in 2:len) {
    x[i] <- cos(x[i-1] + 1)
  }
  return(x)
}

Этот код включает цикл for с быстрой операцией ( cos(x[i-1]+1) ), которые часто выигрывают от векторизации. Однако нетривиально векторизовать эту операцию с базой R, так как R не имеет «кумулятивного косинуса x + 1».

Одним из возможных подходов к ускорению этой функции было бы реализовать ее на C ++, используя пакет Rcpp:

library(Rcpp)
cppFunction("NumericVector repeatedCosPlusOneRcpp(double first, int len) {
  NumericVector x(len);
  x[0] = first;
  for (int i=1; i < len; ++i) {
    x[i] = cos(x[i-1]+1);
  }
  return x;
}")

Это часто обеспечивает значительное ускорение для больших вычислений, при этом получая точные результаты:

all.equal(repeatedCosPlusOne(1, 1e6), repeatedCosPlusOneRcpp(1, 1e6))
# [1] TRUE
system.time(repeatedCosPlusOne(1, 1e6))
#    user  system elapsed 
#   1.274   0.015   1.310 
system.time(repeatedCosPlusOneRcpp(1, 1e6))
#    user  system elapsed 
#   0.028   0.001   0.030 

В этом случае код Rcpp генерирует вектор длиной 1 миллион за 0,03 секунды вместо 1,31 секунды с базовым R-подходом.

Ускорение жесткой для векторизации для циклов путем составления байтов

Следуя примеру Rcpp в этой записи документации, рассмотрим следующую жесткую функцию для векторизации, которая создает вектор длины len где указан первый элемент ( first ), и каждый элемент x_i равен cos(x_{i-1} + 1) :

repeatedCosPlusOne <- function(first, len) {
  x <- numeric(len)
  x[1] <- first
  for (i in 2:len) {
    x[i] <- cos(x[i-1] + 1)
  }
  return(x)
}

Один простой подход к ускорению такой функции без перезаписи одной строки кода - это байт, компилирующий код с использованием компилируемого пакета R:

library(compiler)
repeatedCosPlusOneCompiled <- cmpfun(repeatedCosPlusOne)

Результирующая функция часто будет значительно быстрее, при этом возвращая те же результаты:

all.equal(repeatedCosPlusOne(1, 1e6), repeatedCosPlusOneCompiled(1, 1e6))
# [1] TRUE
system.time(repeatedCosPlusOne(1, 1e6))
#    user  system elapsed 
#   1.175   0.014   1.201 
system.time(repeatedCosPlusOneCompiled(1, 1e6))
#    user  system elapsed 
#   0.339   0.002   0.341 

В этом случае байт-компиляция ускоряла жесткую для векторизации операцию с вектором длиной 1 миллион с 1,20 секунды до 0,34 секунды.

замечание

Сущность repeatedCosPlusOne , как совокупное применение одной функции, может быть более прозрачно выражена с помощью Reduce :

iterFunc <- function(init, n, func) {
  funcs <- replicate(n, func)
  Reduce(function(., f) f(.), funcs, init = init, accumulate = TRUE)
}
repeatedCosPlusOne_vec <- function(first, len) {
  iterFunc(first, len - 1, function(.) cos(. + 1))
}

repeatedCosPlusOne_vec может рассматриваться как «векторизация» repeatedCosPlusOne . Однако можно ожидать, что он будет медленнее в 2 раза:

library(microbenchmark)
microbenchmark(
  repeatedCosPlusOne(1, 1e4),
  repeatedCosPlusOne_vec(1, 1e4)
)
#> Unit: milliseconds
#>                              expr       min        lq     mean   median       uq      max neval cld
#>      repeatedCosPlusOne(1, 10000)  8.349261  9.216724 10.22715 10.23095 11.10817 14.33763   100  a 
#>  repeatedCosPlusOne_vec(1, 10000) 14.406291 16.236153 17.55571 17.22295 18.59085 24.37059   100   b


Modified text is an extract of the original Stack Overflow Documentation
Лицензировано согласно CC BY-SA 3.0
Не связан с Stack Overflow