Sök…


Använda tf.nn.conv2d_transpose för godtyckliga batchstorlekar och med automatisk beräkning av utgångsformen.

Exempel på hur man beräknar utgångsformen och övervinner svårigheterna med att använda tf.nn.conv2d_transpose med okänd batchstorlek (när input.get_shape () är (?, H, W, C) eller (?, C, H, W) ).

def upconvolution (input, output_channel_size, filter_size_h, filter_size_w,
                   stride_h, stride_w, init_w, init_b, layer_name, 
                   dtype=tf.float32, data_format="NHWC", padding='VALID'):
    with tf.variable_scope(layer_name):
      #calculation of the output_shape:
      if data_format == "NHWC":
        input_channel_size = input.get_shape().as_list()[3]
        input_size_h = input.get_shape().as_list()[1]
        input_size_w = input.get_shape().as_list()[2]
        stride_shape = [1, stride_h, stride_w, 1]
        if padding == 'VALID':
          output_size_h = (input_size_h - 1)*stride_h + filter_size_h
          output_size_w = (input_size_w - 1)*stride_w + filter_size_w
        elif padding == 'SAME':
          output_size_h = (input_size_h - 1)*stride_h + 1
          output_size_w = (input_size_w - 1)*stride_w + 1
        else:
          raise ValueError("unknown padding")
        output_shape = tf.stack([tf.shape(input)[0], 
                                output_size_h, output_size_w, 
                                output_channel_size])
      elif data_format == "NCHW":
        input_channel_size = input.get_shape().as_list()[1]
        input_size_h = input.get_shape().as_list()[2]
        input_size_w = input.get_shape().as_list()[3]
        stride_shape = [1, 1, stride_h, stride_w]
        if padding == 'VALID':
          output_size_h = (input_size_h - 1)*stride_h + filter_size_h
          output_size_w = (input_size_w - 1)*stride_w + filter_size_w
        elif padding == 'SAME':
          output_size_h = (input_size_h - 1)*stride_h + 1
          output_size_w = (input_size_w - 1)*stride_w + 1
        else:
          raise ValueError("unknown padding")
        output_shape = tf.stack([tf.shape(input)[0], 
                                output_channel_size, 
                                output_size_h, output_size_w])
      else:
        raise ValueError("unknown data_format")

      #creating weights:
      shape = [filter_size_h, filter_size_w, 
               output_channel_size, input_channel_size]
      W_upconv = tf.get_variable("w", shape=shape, dtype=dtype,
                                 initializer=init_w)
      
      shape=[output_channel_size]
      b_upconv = tf.get_variable("b", shape=shape, dtype=dtype, 
                                 initializer=init_b)
      
      upconv = tf.nn.conv2d_transpose(input, W_upconv, output_shape, stride_shape,
                                      padding=padding,
                                      data_format=data_format)
      output = tf.nn.bias_add(upconv, b_upconv, data_format=data_format)
      
      #Now output.get_shape() is equal (?,?,?,?) which can become a problem in the 
      #next layers. This can be repaired by reshaping the tensor to its shape:
      output = tf.reshape(output, output_shape)
      #now the shape is back to (?, H, W, C) or (?, C, H, W)
      
      return output


Modified text is an extract of the original Stack Overflow Documentation
Licensierat under CC BY-SA 3.0
Inte anslutet till Stack Overflow