Sök…


Minimalt exempel

Q-learning är en variant av modellfritt förstärkningslärande. I Q-learning vill vi att agenten ska uppskatta hur bra ett (tillstånd, åtgärd) par är så att det kan välja bra åtgärder i varje tillstånd. Detta görs genom att ansluta en åtgärdsvärdefunktion (Q) som passar i ekvationen nedan:

1

Där s och a är tillstånd och åtgärder i det aktuella tidsteget. R är den omedelbara belöningen och 2 är rabattfaktor. Och, s ' är det observerade nästa tillståndet.

När agenten interagerar med miljön ser den ett tillstånd som den befinner sig i, utför en åtgärd, får belöningen och observerar det nya tillståndet som det har flyttat till. Denna cykel fortsätter tills medlet når ett avslutande tillstånd. Eftersom Q-learning är en off-policy-metod, kan vi spara varje (tillstånd, handling, belöning, next_state) som en upplevelse i en replaybuffert. Dessa erfarenheter samplas i varje träningsuppdatering och används för att förbättra vår uppskattning av Q. Så här gör du:

  1. Från next_state beräkna Q-värdet för nästa steg genom att anta att agenten girigt väljer en åtgärd i det tillståndet, därav np.max(next_state_value) i koden nedan.
  2. Q-värdet för nästa steg diskonteras och läggs till den omedelbara belöningen som observeras av agenten: (tillstånd, handling, belöning , tillstånd ')
  3. Om en tillståndsåtgärd leder till att avsnittet avslutas, använder vi Q = reward stället för steg 1 och 2 ovan (episodiskt lärande). Så vi måste också lägga till avslutningsflagg till varje upplevelse som läggs till bufferten: (tillstånd, handling, belöning, nästa stat, avslutat)
  4. Vid denna punkt har vi ett Q-värde beräknat från reward och next_state och vi har också ett annat Q-värde som är utgången från q-nätverksfunktionens approximator. Genom att ändra parametrarna för q-nätverksfunktions approximator med hjälp av gradientnedgång och minimera skillnaden mellan dessa två handlingsvärden, konvergerar Q-funktions approximatorn mot de verkliga handlingsvärdena.

Här är en implementering av djupa Q-nätverk.

import tensorflow as tf
import gym
import numpy as np

def fullyConnected(name, input_layer, output_dim, activation=None):
    """
    Adds a fully connected layer after the `input_layer`. `output_dim` is
    the size of next layer. `activation` is the optional activation 
    function for the next layer.
    """
    initializer = tf.random_uniform_initializer(minval=-.003, maxval=.003)

    input_dims = input_layer.get_shape().as_list()[1:]
    weight = tf.get_variable(name + "_w", shape=[*input_dims, output_dim],
                             dtype=tf.float32, initializer=initializer)
    bias = tf.get_variable(name + "_b", shape=output_dim, dtype=tf.float32,
                           initializer=initializer)
    next_layer = tf.matmul(input_layer, weight) + bias

    if activation:
        next_layer = activation(next_layer, name=name + "_activated")

    return next_layer

class Memory(object):
    """
    Saves experiences as (state, action, reward, next_action, 
    termination). It only supports discrete action spaces.
    """

    def __init__(self, size, state_dims):
        self.length = size

        self.states = np.empty([size, state_dims], dtype=float)
        self.actions = np.empty(size, dtype=int)
        self.rewards = np.empty((size, 1), dtype=float)
        self.states_next = np.empty([size, state_dims], dtype=float)
        self.terminations = np.zeros((size, 1), dtype=bool)

        self.memory = [self.states, self.actions,
                       self.rewards, self.states_next, self.terminations]

        self.pointer = 0
        self.count = 0

    def add(self, state, action, reward, next_state, termination):
        self.states[self.pointer] = state
        self.actions[self.pointer] = action
        self.rewards[self.pointer] = reward
        self.states_next[self.pointer] = next_state
        self.terminations[self.pointer] = termination
        self.pointer = (self.pointer + 1) % self.length
        self.count += 1

    def sample(self, batch_size):
        index = np.random.randint(
            min(self.count, self.length), size=(batch_size))
        return (self.states[index], self.actions[index],
            self.rewards[index], self.states_next[index],
            self.terminations[index])

class DQN(object):
    """
    Deep Q network agent. 
    """

    def __init__(self, state_dim, action_dim, memory_size, layer_dims,
                 optimizer):

        self.action_dim = action_dim
        self.state = tf.placeholder(
            tf.float32, [None, state_dim], "states")
        self.action_ph = tf.placeholder(tf.int32, [None], "actions")
        self.action_value_ph = tf.placeholder(
            tf.float32, [None], "action_values")
        self.memory = Memory(memory_size, state_dim)

        def _make():
            flow = self.state
            for i, size in enumerate(layer_dims):
                flow = fullyConnected(
                    "layer%i" % i, flow, size, tf.nn.relu)

            return fullyConnected(
                "output_layer", flow, self.action_dim)

        # generate the learner network
        with tf.variable_scope('learner'):
            self.action_value = _make()
        # generate the target network
        with tf.variable_scope('target'):
            self.target_action_value = _make()

        # get parameters for learner and target networks
        from_list = tf.get_collection(
            tf.GraphKeys.TRAINABLE_VARIABLES, scope='learner')
        target_list = tf.get_collection(
            tf.GraphKeys.TRAINABLE_VARIABLES, scope='target')

        # create a copy operation from parameters of learner 
        # to parameters of target network
        from_list = sorted(from_list, key=lambda v: v.name)
        target_list = sorted(target_list, key=lambda v: v.name)
        self.update_target_network = []
        for i in range(len(from_list)):
            self.update_target_network.append(target_list[i].assign(from_list[i]))

        # gather the action-values of the performed actions
        row = tf.range(0, tf.shape(self.action_value)[0])
        indexes = tf.stack([row, self.action_ph], axis=1)
        action_value = tf.gather_nd(self.action_value, indexes)

        # calculate loss of Q network
        self.single_loss = tf.square(action_value - self.action_value_ph)
        self._loss = tf.reduce_mean(self.single_loss)

        self.train_op = optimizer.minimize(self._loss)

    def train(self, session, batch=None, discount=.97):
        states, actions, rewards, next_states, terminals =\
            self.memory.sample(batch)
        next_state_value = session.run(
            self.target_action_value, {self.state: next_states})
        observed_value = rewards + discount * \
            np.max(next_state_value, 1, keepdims=True)
        observed_value[terminals] = rewards[terminals]

        _, batch_loss = session.run([self.train_op, self._loss], {
            self.state: states, self.action_ph: actions,
            self.action_value_ph: observed_value[:, 0]})
        return batch_loss

    def policy(self, session, state):
        return session.run(self.action_value, {self.state: [state]})[0]

    def memorize(self, state, action, reward, next_state, terminal):
        self.memory.add(state, action, reward, next_state, terminal)

    def update(self, session):
        session.run(self.update_target_network)

I djupa Q-nätverk används få mekanismer för att förbättra agens konvergens. En är betoning på slumpmässigt provtagning av upplevelserna från återuppspelningsbuffert för att förhindra någon temporär relation mellan samplade upplevelser. En annan mekanism är att använda målnätverket i utvärderingen av Q-värdet för next_state . Målnätverket liknar lärarnätverket men dess parametrar ändras mycket mindre ofta. Målnätverket uppdateras inte heller med lutningens nedstigning, utan istället kopieras dess parametrar från elevnätverket.

Koden nedan är ett exempel på att denna agent lär sig att utföra åtgärder i en kartpollmiljö .

ENVIRONMENT = 'CartPole-v1'  # environment name from `OpenAI`.
MEMORY_SIZE = 50000  # how many of recent time steps should be saved in agent's memory
LEARNING_RATE = .01  # learning rate for Adam optimizer
BATCH_SIZE = 8  # number of experiences to sample in each training step
EPSILON = .1  # how often an action should be chosen randomly. This encourages exploration
EPXILON_DECAY = .99  # the rate of decaying `EPSILON`
NETWORK_ARCHITECTURE = [100] # shape of the q network. Each element is one layer
TOTAL_EPISODES = 500  # number of total episodes
MAX_STEPS = 200  # maximum number of steps in each episode
REPORT_STEP = 10  # how many episodes to run before printing a summary

env = gym.make(ENVIRONMENT)  # initialize environment
state_dim = env.observation_space.shape[
    0]  # dimensions of observation space
action_dim = env.action_space.n

optimizer = tf.train.AdamOptimizer(LEARNING_RATE)
agent = DQN(state_dim, action_dim, MEMORY_SIZE,
            NETWORK_ARCHITECTURE, optimizer)

eps = [EPSILON]

def runEpisode(env, session):
    state = env.reset()
    total_l = 0.
    total_reward = 0.
    for i in range(MAX_STEPS):
        if np.random.uniform() < eps[0]:
            action = np.random.randint(action_dim)
        else:
            action_values = agent.policy(session, state)
            action = np.argmax(action_values)

        next_state, reward, terminated, _ = env.step(action)

        if terminated:
            reward = -1

        total_reward += reward

        agent.memorize(state, action, reward, next_state, terminated)
        state = next_state
        total_l += agent.train(session, BATCH_SIZE)

        if terminated:
            break

    eps[0] *= EPXILON_DECAY
    i += 1

    return i, total_reward / i, total_l / i

session = tf.InteractiveSession()
session.run(tf.global_variables_initializer())

for i in range(1, TOTAL_EPISODES + 1):
    leng, reward, loss = runEpisode(env, session)
    agent.update(session)
    if i % REPORT_STEP == 0:
        print(("Episode: %4i " +
               "| Episod Length: %3i " +
               "| Avg Reward: %+.3f " +
               "| Avg Loss: %6.3f " +
               "| Epsilon: %.3f") %
              (i, leng, reward, loss, eps[0]))


Modified text is an extract of the original Stack Overflow Documentation
Licensierat under CC BY-SA 3.0
Inte anslutet till Stack Overflow