tensorflow
Verwendung von transponierten Faltungsschichten
Suche…
Verwendung von tf.nn.conv2d_transpose für beliebige Stapelgrößen und mit automatischer Ausgabeformberechnung.
Beispiel für die Berechnung der Ausgabeform und die Überwindung der Schwierigkeiten bei der Verwendung von tf.nn.conv2d_transpose mit unbekannter Stapelgröße (wenn input.get_shape () (?, H, W, C) oder (?, C, H, W) ist ).
def upconvolution (input, output_channel_size, filter_size_h, filter_size_w,
stride_h, stride_w, init_w, init_b, layer_name,
dtype=tf.float32, data_format="NHWC", padding='VALID'):
with tf.variable_scope(layer_name):
#calculation of the output_shape:
if data_format == "NHWC":
input_channel_size = input.get_shape().as_list()[3]
input_size_h = input.get_shape().as_list()[1]
input_size_w = input.get_shape().as_list()[2]
stride_shape = [1, stride_h, stride_w, 1]
if padding == 'VALID':
output_size_h = (input_size_h - 1)*stride_h + filter_size_h
output_size_w = (input_size_w - 1)*stride_w + filter_size_w
elif padding == 'SAME':
output_size_h = (input_size_h - 1)*stride_h + 1
output_size_w = (input_size_w - 1)*stride_w + 1
else:
raise ValueError("unknown padding")
output_shape = tf.stack([tf.shape(input)[0],
output_size_h, output_size_w,
output_channel_size])
elif data_format == "NCHW":
input_channel_size = input.get_shape().as_list()[1]
input_size_h = input.get_shape().as_list()[2]
input_size_w = input.get_shape().as_list()[3]
stride_shape = [1, 1, stride_h, stride_w]
if padding == 'VALID':
output_size_h = (input_size_h - 1)*stride_h + filter_size_h
output_size_w = (input_size_w - 1)*stride_w + filter_size_w
elif padding == 'SAME':
output_size_h = (input_size_h - 1)*stride_h + 1
output_size_w = (input_size_w - 1)*stride_w + 1
else:
raise ValueError("unknown padding")
output_shape = tf.stack([tf.shape(input)[0],
output_channel_size,
output_size_h, output_size_w])
else:
raise ValueError("unknown data_format")
#creating weights:
shape = [filter_size_h, filter_size_w,
output_channel_size, input_channel_size]
W_upconv = tf.get_variable("w", shape=shape, dtype=dtype,
initializer=init_w)
shape=[output_channel_size]
b_upconv = tf.get_variable("b", shape=shape, dtype=dtype,
initializer=init_b)
upconv = tf.nn.conv2d_transpose(input, W_upconv, output_shape, stride_shape,
padding=padding,
data_format=data_format)
output = tf.nn.bias_add(upconv, b_upconv, data_format=data_format)
#Now output.get_shape() is equal (?,?,?,?) which can become a problem in the
#next layers. This can be repaired by reshaping the tensor to its shape:
output = tf.reshape(output, output_shape)
#now the shape is back to (?, H, W, C) or (?, C, H, W)
return output
Modified text is an extract of the original Stack Overflow Documentation
Lizenziert unter CC BY-SA 3.0
Nicht angeschlossen an Stack Overflow