Zoeken…


Het gebruik van tf.nn.conv2d_transpose voor willekeurige batchgroottes en met automatische uitvoervormberekening.

Voorbeeld van het berekenen van de uitvoervorm en het overwinnen van de moeilijkheden bij het gebruik van tf.nn.conv2d_transpose met onbekende batchgrootte (wanneer input.get_shape () (?, H, W, C) of (?, C, H, W) is ).

def upconvolution (input, output_channel_size, filter_size_h, filter_size_w,
                   stride_h, stride_w, init_w, init_b, layer_name, 
                   dtype=tf.float32, data_format="NHWC", padding='VALID'):
    with tf.variable_scope(layer_name):
      #calculation of the output_shape:
      if data_format == "NHWC":
        input_channel_size = input.get_shape().as_list()[3]
        input_size_h = input.get_shape().as_list()[1]
        input_size_w = input.get_shape().as_list()[2]
        stride_shape = [1, stride_h, stride_w, 1]
        if padding == 'VALID':
          output_size_h = (input_size_h - 1)*stride_h + filter_size_h
          output_size_w = (input_size_w - 1)*stride_w + filter_size_w
        elif padding == 'SAME':
          output_size_h = (input_size_h - 1)*stride_h + 1
          output_size_w = (input_size_w - 1)*stride_w + 1
        else:
          raise ValueError("unknown padding")
        output_shape = tf.stack([tf.shape(input)[0], 
                                output_size_h, output_size_w, 
                                output_channel_size])
      elif data_format == "NCHW":
        input_channel_size = input.get_shape().as_list()[1]
        input_size_h = input.get_shape().as_list()[2]
        input_size_w = input.get_shape().as_list()[3]
        stride_shape = [1, 1, stride_h, stride_w]
        if padding == 'VALID':
          output_size_h = (input_size_h - 1)*stride_h + filter_size_h
          output_size_w = (input_size_w - 1)*stride_w + filter_size_w
        elif padding == 'SAME':
          output_size_h = (input_size_h - 1)*stride_h + 1
          output_size_w = (input_size_w - 1)*stride_w + 1
        else:
          raise ValueError("unknown padding")
        output_shape = tf.stack([tf.shape(input)[0], 
                                output_channel_size, 
                                output_size_h, output_size_w])
      else:
        raise ValueError("unknown data_format")

      #creating weights:
      shape = [filter_size_h, filter_size_w, 
               output_channel_size, input_channel_size]
      W_upconv = tf.get_variable("w", shape=shape, dtype=dtype,
                                 initializer=init_w)
      
      shape=[output_channel_size]
      b_upconv = tf.get_variable("b", shape=shape, dtype=dtype, 
                                 initializer=init_b)
      
      upconv = tf.nn.conv2d_transpose(input, W_upconv, output_shape, stride_shape,
                                      padding=padding,
                                      data_format=data_format)
      output = tf.nn.bias_add(upconv, b_upconv, data_format=data_format)
      
      #Now output.get_shape() is equal (?,?,?,?) which can become a problem in the 
      #next layers. This can be repaired by reshaping the tensor to its shape:
      output = tf.reshape(output, output_shape)
      #now the shape is back to (?, H, W, C) or (?, C, H, W)
      
      return output


Modified text is an extract of the original Stack Overflow Documentation
Licentie onder CC BY-SA 3.0
Niet aangesloten bij Stack Overflow