Python Language
Возведение
Поиск…
Синтаксис
- value1 ** value2
- pow (значение1, значение2 [, значение3])
- value1 .__ pow __ (значение2 [, значение3])
- значение2 .__ rpow __ (значение1)
- operator.pow (значение1, значение2)
- оператор .__ pow __ (значение1, значение2)
- math.pow (значение1, значение2)
- Math.sqrt (значение1)
- Math.exp (значение1)
- cmath.exp (значение1)
- math.expm1 (значение1)
Квадратный корень: math.sqrt () и cmath.sqrt
math
модуль содержит math.sqrt()
которая может вычислять квадратный корень любого числа (которое может быть преобразовано в float
), и результат всегда будет float
:
import math
math.sqrt(9) # 3.0
math.sqrt(11.11) # 3.3331666624997918
math.sqrt(Decimal('6.25')) # 2.5
Функция math.sqrt()
вызывает значение ValueError
если результат будет complex
:
math.sqrt(-10)
Ошибка ValueError: ошибка в области математики
math.sqrt(x)
быстрее, чем math.pow(x, 0.5)
или x ** 0.5
но точность результатов одинакова. Модуль cmath
очень похож на math
модуль, за исключением того, что он может вычислять комплексные числа, и все его результаты представлены в виде a + bi. Он также может использовать .sqrt()
:
import cmath
cmath.sqrt(4) # 2+0j
cmath.sqrt(-4) # 2j
Что с j
? j
эквивалентно квадратному корню из -1. Все числа можно поместить в форму a + bi или в этом случае a + bj. a
- действительная часть числа, такого как 2 в 2+0j
. Поскольку он не имеет мнимой части, b
равно 0. b
представляет часть мнимой части числа, такого как 2 в 2j
. Поскольку в этом нет никакой существенной части, 2j
также может быть записана как 0 + 2j
.
Экспоненциальность с использованием встроенных функций: ** и pow ()
Экспоненциацию можно использовать, используя встроенную pow
или функцию **
:
2 ** 3 # 8
pow(2, 3) # 8
Для большинства (все в Python 2.x) арифметических операций тип результата будет иметь вид более широкого операнда. Это не относится к **
; следующие случаи являются исключениями из этого правила:
Base:
int
, exponent:int < 0
:2 ** -3 # Out: 0.125 (result is a float)
Это также справедливо для Python 3.x.
До Python 2.2.0 это повысило значение
ValueError
.Base:
int < 0
илиfloat < 0
, exponent:float != int
(-2) ** (0.5) # also (-2.) ** (0.5) # Out: (8.659560562354934e-17+1.4142135623730951j) (result is complex)
До python 3.0.0 это повысило значение
ValueError
.
Модуль operator
содержит две функции, эквивалентные **
-оператору:
import operator
operator.pow(4, 2) # 16
operator.__pow__(4, 3) # 64
или можно напрямую вызвать метод __pow__
:
val1, val2 = 4, 2
val1.__pow__(val2) # 16
val2.__rpow__(val1) # 16
# in-place power operation isn't supported by immutable classes like int, float, complex:
# val1.__ipow__(val2)
Экспоненция с использованием математического модуля: math.pow ()
math
модуль содержит другую math.pow()
. Разница с встроенной pow()
-функция или **
заключается в том, что результатом всегда является float
:
import math
math.pow(2, 2) # 4.0
math.pow(-2., 2) # 4.0
Это исключает вычисления со сложными входами:
math.pow(2, 2+0j)
TypeError: невозможно преобразовать комплекс в float
и вычисления, которые приведут к сложным результатам:
math.pow(-2, 0.5)
Ошибка ValueError: ошибка в области математики
Экспоненциальная функция: math.exp () и cmath.exp ()
И math
и cmath
-модуль содержат число Эйлера: e и использование его со встроенной pow()
или **
-оператор работает в основном как math.exp()
:
import math
math.e ** 2 # 7.3890560989306495
math.exp(2) # 7.38905609893065
import cmath
cmath.e ** 2 # 7.3890560989306495
cmath.exp(2) # (7.38905609893065+0j)
Однако результат отличается и использование экспоненциальной функции напрямую более надежно, чем встроенное возведение в степень с базовой math.e
:
print(math.e ** 10) # 22026.465794806703
print(math.exp(10)) # 22026.465794806718
print(cmath.exp(10).real) # 22026.465794806718
# difference starts here ---------------^
Экспоненциальная функция минус 1: math.expm1 ()
math
модуль содержит expm1()
которая может вычислять выражение math.e ** x - 1
для очень маленького x
с большей точностью, чем math.exp(x)
или cmath.exp(x)
позволит:
import math
print(math.e ** 1e-3 - 1) # 0.0010005001667083846
print(math.exp(1e-3) - 1) # 0.0010005001667083846
print(math.expm1(1e-3)) # 0.0010005001667083417
# ------------------^
Для очень маленького x разница становится больше:
print(math.e ** 1e-15 - 1) # 1.1102230246251565e-15
print(math.exp(1e-15) - 1) # 1.1102230246251565e-15
print(math.expm1(1e-15)) # 1.0000000000000007e-15
# ^-------------------
Улучшение значимо для научных вычислений. Например , закон Планка содержит экспоненциальную функцию минус 1:
def planks_law(lambda_, T):
from scipy.constants import h, k, c # If no scipy installed hardcode these!
return 2 * h * c ** 2 / (lambda_ ** 5 * math.expm1(h * c / (lambda_ * k * T)))
def planks_law_naive(lambda_, T):
from scipy.constants import h, k, c # If no scipy installed hardcode these!
return 2 * h * c ** 2 / (lambda_ ** 5 * (math.e ** (h * c / (lambda_ * k * T)) - 1))
planks_law(100, 5000) # 4.139080074896474e-19
planks_law_naive(100, 5000) # 4.139080073488451e-19
# ^----------
planks_law(1000, 5000) # 4.139080128493406e-23
planks_law_naive(1000, 5000) # 4.139080233183142e-23
# ^------------
Магические методы и возведение в степень: встроенный, математический и cmath
Предположим, что у вас есть класс, который хранит чисто целочисленные значения:
class Integer(object):
def __init__(self, value):
self.value = int(value) # Cast to an integer
def __repr__(self):
return '{cls}({val})'.format(cls=self.__class__.__name__,
val=self.value)
def __pow__(self, other, modulo=None):
if modulo is None:
print('Using __pow__')
return self.__class__(self.value ** other)
else:
print('Using __pow__ with modulo')
return self.__class__(pow(self.value, other, modulo))
def __float__(self):
print('Using __float__')
return float(self.value)
def __complex__(self):
print('Using __complex__')
return complex(self.value, 0)
Использование встроенной функции pow
или **
оператор всегда вызывает __pow__
:
Integer(2) ** 2 # Integer(4)
# Prints: Using __pow__
Integer(2) ** 2.5 # Integer(5)
# Prints: Using __pow__
pow(Integer(2), 0.5) # Integer(1)
# Prints: Using __pow__
operator.pow(Integer(2), 3) # Integer(8)
# Prints: Using __pow__
operator.__pow__(Integer(3), 3) # Integer(27)
# Prints: Using __pow__
Второй аргумент метода __pow__()
может быть предоставлен только с помощью встроенной функции pow()
или путем прямого вызова метода:
pow(Integer(2), 3, 4) # Integer(0)
# Prints: Using __pow__ with modulo
Integer(2).__pow__(3, 4) # Integer(0)
# Prints: Using __pow__ with modulo
Хотя math
функции всегда преобразуют его в float
и используют вычисление float:
import math
math.pow(Integer(2), 0.5) # 1.4142135623730951
# Prints: Using __float__
cmath
-функции пытаются преобразовать его в complex
но могут также возвращаться к float
если нет явного преобразования в complex
:
import cmath
cmath.exp(Integer(2)) # (7.38905609893065+0j)
# Prints: Using __complex__
del Integer.__complex__ # Deleting __complex__ method - instances cannot be cast to complex
cmath.exp(Integer(2)) # (7.38905609893065+0j)
# Prints: Using __float__
Ни math
ни cmath
будут работать, если отсутствует метод __float__()
:
del Integer.__float__ # Deleting __complex__ method
math.sqrt(Integer(2)) # also cmath.exp(Integer(2))
TypeError: требуется поплавок
Модульное возведение в степень: pow () с тремя аргументами
Поставка pow()
тремя аргументами pow(a, b, c)
оценивает модульное возведение в степень a b mod c :
pow(3, 4, 17) # 13
# equivalent unoptimized expression:
3 ** 4 % 17 # 13
# steps:
3 ** 4 # 81
81 % 17 # 13
Для встроенных типов, использующих модульное возведение в степень, возможно только в том случае, если:
- Первый аргумент -
int
- Второй аргумент - это
int >= 0
- Третий аргумент - это
int != 0
Эти ограничения также присутствуют в python 3.x
Например, можно использовать 3-аргументную форму pow
для определения модульной обратной функции:
def modular_inverse(x, p):
"""Find a such as a·x ≡ 1 (mod p), assuming p is prime."""
return pow(x, p-2, p)
[modular_inverse(x, 13) for x in range(1,13)]
# Out: [1, 7, 9, 10, 8, 11, 2, 5, 3, 4, 6, 12]
Корни: n-й корень с дробными показателями
Хотя функция math.sqrt
предоставляется для конкретного случая квадратных корней, часто удобно использовать оператор экспоненции ( **
) с дробными показателями для выполнения операций n-го корня, таких как корни куба.
Обратное к возведению в степень - это возведение в степень по обратному экспоненте. Итак, если вы можете кубировать число, поместив его в показатель степени 3, вы можете найти корень куба числа, поставив его на показатель 1/3.
>>> x = 3
>>> y = x ** 3
>>> y
27
>>> z = y ** (1.0 / 3)
>>> z
3.0
>>> z == x
True
Вычисление больших целых корней
Несмотря на то, что Python изначально поддерживает большие целые числа, использование n-го корня из очень больших чисел может привести к ошибке в Python.
x = 2 ** 100
cube = x ** 3
root = cube ** (1.0 / 3)
OverflowError: long int too large для преобразования в float
При работе с такими большими целыми числами вам нужно будет использовать пользовательскую функцию для вычисления n-го корня числа.
def nth_root(x, n):
# Start with some reasonable bounds around the nth root.
upper_bound = 1
while upper_bound ** n <= x:
upper_bound *= 2
lower_bound = upper_bound // 2
# Keep searching for a better result as long as the bounds make sense.
while lower_bound < upper_bound:
mid = (lower_bound + upper_bound) // 2
mid_nth = mid ** n
if lower_bound < mid and mid_nth < x:
lower_bound = mid
elif upper_bound > mid and mid_nth > x:
upper_bound = mid
else:
# Found perfect nth root.
return mid
return mid + 1
x = 2 ** 100
cube = x ** 3
root = nth_root(cube, 3)
x == root
# True