R Language
RCPP
Zoeken…
Inline Code Compileren
Rcpp heeft twee functies die inline compilatie van code mogelijk maken en rechtstreeks naar R cppFunction()
: cppFunction()
en evalCpp()
. Een derde functie genaamd sourceCpp()
bestaat om de C ++ code in een apart bestand in te lezen, maar kan ook worden gebruikt als cppFunction()
.
Hieronder ziet u een voorbeeld van het compileren van een C ++ -functie in R. Let op het gebruik van ""
om de bron te omringen.
# Note - This is R code.
# cppFunction in Rcpp allows for rapid testing.
require(Rcpp)
# Creates a function that multiples each element in a vector
# Returns the modified vector.
cppFunction("
NumericVector exfun(NumericVector x, int i){
x = x*i;
return x;
}")
# Calling function in R
exfun(1:5, 3)
Om snel een C ++ uitdrukking te begrijpen, gebruik:
# Use evalCpp to evaluate C++ expressions
evalCpp("std::numeric_limits<double>::max()")
## [1] 1.797693e+308
Rcpp-kenmerken
Rcpp Attributes maakt het werken met R en C ++ eenvoudig. De vorm van attributen heeft:
// [[Rcpp::attribute]]
Het gebruik van attributen wordt meestal geassocieerd met:
// [[Rcpp::export]]
die direct boven een aangegeven functiekop wordt geplaatst bij het lezen in een C ++ -bestand via sourceCpp()
.
Hieronder ziet u een voorbeeld van een extern C ++ -bestand dat attributen gebruikt.
// Add code below into C++ file Rcpp_example.cpp
#include <Rcpp.h>
using namespace Rcpp;
// Place the export tag right above function declaration.
// [[Rcpp::export]]
double muRcpp(NumericVector x){
int n = x.size(); // Size of vector
double sum = 0; // Sum value
// For loop, note cpp index shift to 0
for(int i = 0; i < n; i++){
// Shorthand for sum = sum + x[i]
sum += x[i];
}
return sum/n; // Obtain and return the Mean
}
// Place dependent functions above call or
// declare the function definition with:
double muRcpp(NumericVector x);
// [[Rcpp::export]]
double varRcpp(NumericVector x, bool bias = true){
// Calculate the mean using C++ function
double mean = muRcpp(x);
double sum = 0;
int n = x.size();
for(int i = 0; i < n; i++){
sum += pow(x[i] - mean, 2.0); // Square
}
return sum/(n-bias); // Return variance
}
Om dit externe C ++ -bestand binnen R te gebruiken , doen we het volgende:
require(Rcpp)
# Compile File
sourceCpp("path/to/file/Rcpp_example.cpp")
# Make some sample data
x = 1:5
all.equal(muRcpp(x), mean(x))
## TRUE
all.equal(varRcpp(x), var(x))
## TRUE
Rcpp uitbreiden met plug-ins
Binnen C ++ kan men verschillende compilatievlaggen instellen met:
// [[Rcpp::plugins(name)]]
Lijst met ingebouwde plug-ins:
// built-in C++11 plugin
// [[Rcpp::plugins(cpp11)]]
// built-in C++11 plugin for older g++ compiler
// [[Rcpp::plugins(cpp0x)]]
// built-in C++14 plugin for C++14 standard
// [[Rcpp::plugins(cpp14)]]
// built-in C++1y plugin for C++14 and C++17 standard under development
// [[Rcpp::plugins(cpp1y)]]
// built-in OpenMP++11 plugin
// [[Rcpp::plugins(openmp)]]
Aanvullende buildafhankelijkheid opgeven
Als u extra pakketten binnen het Rcpp-ecosysteem wilt gebruiken, is het juiste headerbestand mogelijk niet Rcpp.h
maar Rcpp<PACKAGE>.h
(zoals bijvoorbeeld voor RcppArmadillo ). Het moet meestal worden geïmporteerd en vervolgens wordt de afhankelijkheid binnen vermeld
// [[Rcpp::depends(Rcpp<PACKAGE>)]]
Voorbeelden:
// Use the RcppArmadillo package
// Requires different header file from Rcpp.h
#include <RcppArmadillo.h>
// [[Rcpp::depends(RcppArmadillo)]]
// Use the RcppEigen package
// Requires different header file from Rcpp.h
#include <RcppEigen.h>
// [[Rcpp::depends(RcppEigen)]]