Sök…
Anmärkningar
Det är bättre att använda std :: shared_mutex än std :: shared_timed_mutex .
Prestationsskillnaden är mer än dubbelt.
Om du vill använda RWLock kommer du att upptäcka att det finns två alternativ.
Det är std :: shared_mutex och shared_timed_mutex.
du kanske tror att std :: shared_timed_mutex är bara versionen 'std :: shared_mutex + time method'.
Men implementeringen är helt annorlunda.
Koden nedan är MSVC14.1-implementering av std :: shared_mutex.
class shared_mutex
{
public:
typedef _Smtx_t * native_handle_type;
shared_mutex() _NOEXCEPT
: _Myhandle(0)
{ // default construct
}
~shared_mutex() _NOEXCEPT
{ // destroy the object
}
void lock() _NOEXCEPT
{ // lock exclusive
_Smtx_lock_exclusive(&_Myhandle);
}
bool try_lock() _NOEXCEPT
{ // try to lock exclusive
return (_Smtx_try_lock_exclusive(&_Myhandle) != 0);
}
void unlock() _NOEXCEPT
{ // unlock exclusive
_Smtx_unlock_exclusive(&_Myhandle);
}
void lock_shared() _NOEXCEPT
{ // lock non-exclusive
_Smtx_lock_shared(&_Myhandle);
}
bool try_lock_shared() _NOEXCEPT
{ // try to lock non-exclusive
return (_Smtx_try_lock_shared(&_Myhandle) != 0);
}
void unlock_shared() _NOEXCEPT
{ // unlock non-exclusive
_Smtx_unlock_shared(&_Myhandle);
}
native_handle_type native_handle() _NOEXCEPT
{ // get native handle
return (&_Myhandle);
}
shared_mutex(const shared_mutex&) = delete;
shared_mutex& operator=(const shared_mutex&) = delete;
private:
_Smtx_t _Myhandle;
};
void __cdecl _Smtx_lock_exclusive(_Smtx_t * smtx)
{ /* lock shared mutex exclusively */
AcquireSRWLockExclusive(reinterpret_cast<PSRWLOCK>(smtx));
}
void __cdecl _Smtx_lock_shared(_Smtx_t * smtx)
{ /* lock shared mutex non-exclusively */
AcquireSRWLockShared(reinterpret_cast<PSRWLOCK>(smtx));
}
int __cdecl _Smtx_try_lock_exclusive(_Smtx_t * smtx)
{ /* try to lock shared mutex exclusively */
return (TryAcquireSRWLockExclusive(reinterpret_cast<PSRWLOCK>(smtx)));
}
int __cdecl _Smtx_try_lock_shared(_Smtx_t * smtx)
{ /* try to lock shared mutex non-exclusively */
return (TryAcquireSRWLockShared(reinterpret_cast<PSRWLOCK>(smtx)));
}
void __cdecl _Smtx_unlock_exclusive(_Smtx_t * smtx)
{ /* unlock exclusive shared mutex */
ReleaseSRWLockExclusive(reinterpret_cast<PSRWLOCK>(smtx));
}
void __cdecl _Smtx_unlock_shared(_Smtx_t * smtx)
{ /* unlock non-exclusive shared mutex */
ReleaseSRWLockShared(reinterpret_cast<PSRWLOCK>(smtx));
}
Du kan se att std :: shared_mutex implementeras i Windows Slim Reader / Writ Locks ( https://msdn.microsoft.com/ko-kr/library/windows/desktop/aa904937(v=vs.85).aspx)
Låt oss nu titta på implementeringen av std :: shared_timed_mutex.
Koden nedan är MSVC14.1-implementering av std :: shared_timed_mutex.
class shared_timed_mutex
{
typedef unsigned int _Read_cnt_t;
static constexpr _Read_cnt_t _Max_readers = _Read_cnt_t(-1);
public:
shared_timed_mutex() _NOEXCEPT
: _Mymtx(), _Read_queue(), _Write_queue(),
_Readers(0), _Writing(false)
{ // default construct
}
~shared_timed_mutex() _NOEXCEPT
{ // destroy the object
}
void lock()
{ // lock exclusive
unique_lock<mutex> _Lock(_Mymtx);
while (_Writing)
_Write_queue.wait(_Lock);
_Writing = true;
while (0 < _Readers)
_Read_queue.wait(_Lock); // wait for writing, no readers
}
bool try_lock()
{ // try to lock exclusive
lock_guard<mutex> _Lock(_Mymtx);
if (_Writing || 0 < _Readers)
return (false);
else
{ // set writing, no readers
_Writing = true;
return (true);
}
}
template<class _Rep,
class _Period>
bool try_lock_for(
const chrono::duration<_Rep, _Period>& _Rel_time)
{ // try to lock for duration
return (try_lock_until(chrono::steady_clock::now() + _Rel_time));
}
template<class _Clock,
class _Duration>
bool try_lock_until(
const chrono::time_point<_Clock, _Duration>& _Abs_time)
{ // try to lock until time point
auto _Not_writing = [this] { return (!_Writing); };
auto _Zero_readers = [this] { return (_Readers == 0); };
unique_lock<mutex> _Lock(_Mymtx);
if (!_Write_queue.wait_until(_Lock, _Abs_time, _Not_writing))
return (false);
_Writing = true;
if (!_Read_queue.wait_until(_Lock, _Abs_time, _Zero_readers))
{ // timeout, leave writing state
_Writing = false;
_Lock.unlock(); // unlock before notifying, for efficiency
_Write_queue.notify_all();
return (false);
}
return (true);
}
void unlock()
{ // unlock exclusive
{ // unlock before notifying, for efficiency
lock_guard<mutex> _Lock(_Mymtx);
_Writing = false;
}
_Write_queue.notify_all();
}
void lock_shared()
{ // lock non-exclusive
unique_lock<mutex> _Lock(_Mymtx);
while (_Writing || _Readers == _Max_readers)
_Write_queue.wait(_Lock);
++_Readers;
}
bool try_lock_shared()
{ // try to lock non-exclusive
lock_guard<mutex> _Lock(_Mymtx);
if (_Writing || _Readers == _Max_readers)
return (false);
else
{ // count another reader
++_Readers;
return (true);
}
}
template<class _Rep,
class _Period>
bool try_lock_shared_for(
const chrono::duration<_Rep, _Period>& _Rel_time)
{ // try to lock non-exclusive for relative time
return (try_lock_shared_until(_Rel_time
+ chrono::steady_clock::now()));
}
template<class _Time>
bool _Try_lock_shared_until(_Time _Abs_time)
{ // try to lock non-exclusive until absolute time
auto _Can_acquire = [this] {
return (!_Writing && _Readers < _Max_readers); };
unique_lock<mutex> _Lock(_Mymtx);
if (!_Write_queue.wait_until(_Lock, _Abs_time, _Can_acquire))
return (false);
++_Readers;
return (true);
}
template<class _Clock,
class _Duration>
bool try_lock_shared_until(
const chrono::time_point<_Clock, _Duration>& _Abs_time)
{ // try to lock non-exclusive until absolute time
return (_Try_lock_shared_until(_Abs_time));
}
bool try_lock_shared_until(const xtime *_Abs_time)
{ // try to lock non-exclusive until absolute time
return (_Try_lock_shared_until(_Abs_time));
}
void unlock_shared()
{ // unlock non-exclusive
_Read_cnt_t _Local_readers;
bool _Local_writing;
{ // unlock before notifying, for efficiency
lock_guard<mutex> _Lock(_Mymtx);
--_Readers;
_Local_readers = _Readers;
_Local_writing = _Writing;
}
if (_Local_writing && _Local_readers == 0)
_Read_queue.notify_one();
else if (!_Local_writing && _Local_readers == _Max_readers - 1)
_Write_queue.notify_all();
}
shared_timed_mutex(const shared_timed_mutex&) = delete;
shared_timed_mutex& operator=(const shared_timed_mutex&) = delete;
private:
mutex _Mymtx;
condition_variable _Read_queue, _Write_queue;
_Read_cnt_t _Readers;
bool _Writing;
};
class stl_condition_variable_win7 final : public stl_condition_variable_interface
{
public:
stl_condition_variable_win7()
{
__crtInitializeConditionVariable(&m_condition_variable);
}
~stl_condition_variable_win7() = delete;
stl_condition_variable_win7(const stl_condition_variable_win7&) = delete;
stl_condition_variable_win7& operator=(const stl_condition_variable_win7&) = delete;
virtual void destroy() override {}
virtual void wait(stl_critical_section_interface *lock) override
{
if (!stl_condition_variable_win7::wait_for(lock, INFINITE))
std::terminate();
}
virtual bool wait_for(stl_critical_section_interface *lock, unsigned int timeout) override
{
return __crtSleepConditionVariableSRW(&m_condition_variable, static_cast<stl_critical_section_win7 *>(lock)->native_handle(), timeout, 0) != 0;
}
virtual void notify_one() override
{
__crtWakeConditionVariable(&m_condition_variable);
}
virtual void notify_all() override
{
__crtWakeAllConditionVariable(&m_condition_variable);
}
private:
CONDITION_VARIABLE m_condition_variable;
};
Du kan se att std :: shared_timed_mutex implementeras i std :: condition_value.
Det här är en enorm skillnad.
Så låt oss kontrollera prestanda hos två av dem.
Detta är resultatet av läs / skrivtest under 1000 millisekund.
std :: shared_mutex bearbetade läs / skriv mer än två gånger mer än std :: shared_timed_mutex.
I det här exemplet är läs / skrivförhållandet detsamma, men läshastigheten är mer frekvent än skrivhastigheten i reell.
Därför kan prestationsskillnaden bli större.
koden nedan är koden i det här exemplet.
void useSTLSharedMutex()
{
std::shared_mutex shared_mtx_lock;
std::vector<std::thread> readThreads;
std::vector<std::thread> writeThreads;
std::list<int> data = { 0 };
volatile bool exit = false;
std::atomic<int> readProcessedCnt(0);
std::atomic<int> writeProcessedCnt(0);
for (unsigned int i = 0; i < std::thread::hardware_concurrency(); i++)
{
readThreads.push_back(std::thread([&data, &exit, &shared_mtx_lock, &readProcessedCnt]() {
std::list<int> mydata;
int localProcessCnt = 0;
while (true)
{
shared_mtx_lock.lock_shared();
mydata.push_back(data.back());
++localProcessCnt;
shared_mtx_lock.unlock_shared();
if (exit)
break;
}
std::atomic_fetch_add(&readProcessedCnt, localProcessCnt);
}));
writeThreads.push_back(std::thread([&data, &exit, &shared_mtx_lock, &writeProcessedCnt]() {
int localProcessCnt = 0;
while (true)
{
shared_mtx_lock.lock();
data.push_back(rand() % 100);
++localProcessCnt;
shared_mtx_lock.unlock();
if (exit)
break;
}
std::atomic_fetch_add(&writeProcessedCnt, localProcessCnt);
}));
}
std::this_thread::sleep_for(std::chrono::milliseconds(MAIN_WAIT_MILLISECONDS));
exit = true;
for (auto &r : readThreads)
r.join();
for (auto &w : writeThreads)
w.join();
std::cout << "STLSharedMutex READ : " << readProcessedCnt << std::endl;
std::cout << "STLSharedMutex WRITE : " << writeProcessedCnt << std::endl;
std::cout << "TOTAL READ&WRITE : " << readProcessedCnt + writeProcessedCnt << std::endl << std::endl;
}
void useSTLSharedTimedMutex()
{
std::shared_timed_mutex shared_mtx_lock;
std::vector<std::thread> readThreads;
std::vector<std::thread> writeThreads;
std::list<int> data = { 0 };
volatile bool exit = false;
std::atomic<int> readProcessedCnt(0);
std::atomic<int> writeProcessedCnt(0);
for (unsigned int i = 0; i < std::thread::hardware_concurrency(); i++)
{
readThreads.push_back(std::thread([&data, &exit, &shared_mtx_lock, &readProcessedCnt]() {
std::list<int> mydata;
int localProcessCnt = 0;
while (true)
{
shared_mtx_lock.lock_shared();
mydata.push_back(data.back());
++localProcessCnt;
shared_mtx_lock.unlock_shared();
if (exit)
break;
}
std::atomic_fetch_add(&readProcessedCnt, localProcessCnt);
}));
writeThreads.push_back(std::thread([&data, &exit, &shared_mtx_lock, &writeProcessedCnt]() {
int localProcessCnt = 0;
while (true)
{
shared_mtx_lock.lock();
data.push_back(rand() % 100);
++localProcessCnt;
shared_mtx_lock.unlock();
if (exit)
break;
}
std::atomic_fetch_add(&writeProcessedCnt, localProcessCnt);
}));
}
std::this_thread::sleep_for(std::chrono::milliseconds(MAIN_WAIT_MILLISECONDS));
exit = true;
for (auto &r : readThreads)
r.join();
for (auto &w : writeThreads)
w.join();
std::cout << "STLSharedTimedMutex READ : " << readProcessedCnt << std::endl;
std::cout << "STLSharedTimedMutex WRITE : " << writeProcessedCnt << std::endl;
std::cout << "TOTAL READ&WRITE : " << readProcessedCnt + writeProcessedCnt << std::endl << std::endl;
}
std :: unique_lock, std :: shared_lock, std :: lock_guard
Används för RAII-stil förvärvning av försökslås, tidsinställda försökslås och rekursiva lås.
std::unique_lock
möjliggör exklusivt ägande av mutexer.
std::shared_lock
möjliggör delat ägande av mutexer. Flera trådar kan innehålla std::shared_locks
på en std::shared_mutex
. Tillgänglig från C ++ 14.
std::lock_guard
är ett lätt alternativ till std::unique_lock
och std::shared_lock
.
#include <unordered_map>
#include <mutex>
#include <shared_mutex>
#include <thread>
#include <string>
#include <iostream>
class PhoneBook {
public:
std::string getPhoneNo( const std::string & name )
{
std::shared_lock<std::shared_timed_mutex> l(_protect);
auto it = _phonebook.find( name );
if ( it != _phonebook.end() )
return (*it).second;
return "";
}
void addPhoneNo ( const std::string & name, const std::string & phone )
{
std::unique_lock<std::shared_timed_mutex> l(_protect);
_phonebook[name] = phone;
}
std::shared_timed_mutex _protect;
std::unordered_map<std::string,std::string> _phonebook;
};
Strategier för låsklasser: std :: try_to_lock, std :: adopt_lock, std :: defer_lock
När du skapar en std :: unique_lock finns det tre olika låsstrategier att välja mellan: std::try_to_lock
, std::defer_lock
och std::adopt_lock
-
std::try_to_lock
gör det möjligt att prova ett lås utan att blockera:
{
std::atomic_int temp {0};
std::mutex _mutex;
std::thread t( [&](){
while( temp!= -1){
std::this_thread::sleep_for(std::chrono::seconds(5));
std::unique_lock<std::mutex> lock( _mutex, std::try_to_lock);
if(lock.owns_lock()){
//do something
temp=0;
}
}
});
while ( true )
{
std::this_thread::sleep_for(std::chrono::seconds(1));
std::unique_lock<std::mutex> lock( _mutex, std::try_to_lock);
if(lock.owns_lock()){
if (temp < INT_MAX){
++temp;
}
std::cout << temp << std::endl;
}
}
}
-
std::defer_lock
gör det möjligt att skapa en låsstruktur utan att få låset. När du låser mer än en mutex finns det ett fönster med möjlighet till en dödlås om två funktionsanropar försöker skaffa lås på samma gång:
{
std::unique_lock<std::mutex> lock1(_mutex1, std::defer_lock);
std::unique_lock<std::mutex> lock2(_mutex2, std::defer_lock);
lock1.lock()
lock2.lock(); // deadlock here
std::cout << "Locked! << std::endl;
//...
}
Med följande kod, oavsett vad som händer i funktionen, förvärvas och släpps låsen i lämplig ordning:
{
std::unique_lock<std::mutex> lock1(_mutex1, std::defer_lock);
std::unique_lock<std::mutex> lock2(_mutex2, std::defer_lock);
std::lock(lock1,lock2); // no deadlock possible
std::cout << "Locked! << std::endl;
//...
}
-
std::adopt_lock
försöker inte låsa en andra gång om den ringande tråden för närvarande äger låset.
{
std::unique_lock<std::mutex> lock1(_mutex1, std::adopt_lock);
std::unique_lock<std::mutex> lock2(_mutex2, std::adopt_lock);
std::cout << "Locked! << std::endl;
//...
}
Något att tänka på är att std :: adopt_lock inte är ett substitut för rekursiv mutex-användning. När låset går utanför räckvidden släpps mutex.
std :: mutex
std :: mutex är en enkel, icke-rekursiv synkroniseringsstruktur som används för att skydda data som åtkomst av flera trådar.
std::atomic_int temp{0};
std::mutex _mutex;
std::thread t( [&](){
while( temp!= -1){
std::this_thread::sleep_for(std::chrono::seconds(5));
std::unique_lock<std::mutex> lock( _mutex);
temp=0;
}
});
while ( true )
{
std::this_thread::sleep_for(std::chrono::milliseconds(1));
std::unique_lock<std::mutex> lock( _mutex, std::try_to_lock);
if ( temp < INT_MAX )
temp++;
cout << temp << endl;
}
std :: scoped_lock (C ++ 17)
std::scoped_lock
tillhandahåller semantik i RAII-stil för att äga ytterligare en mutex, i kombination med de algoritmer för att undvika lås som används av std::lock
. När std::scoped_lock
förstörs släpps std::scoped_lock
i omvänd ordning från vilken de förvärvades.
{
std::scoped_lock lock{_mutex1,_mutex2};
//do something
}
Mutex-typer
C ++ 1x erbjuder ett urval av mutex-klasser:
- std :: mutex - erbjuder enkel låsfunktion.
- std :: timed_mutex - erbjuder try_to_lock-funktionalitet
- std :: recursive_mutex - tillåter rekursiv låsning av samma tråd.
- std :: shared_mutex, std :: shared_timed_mutex - erbjuder delad och unik låsfunktion.
std :: lås
std::lock
använder algoritmer för att undvika deadlock för att låsa en eller flera mutexer. Om ett undantag kastas under ett samtal för att låsa flera objekt låser std::lock
upp de framgångsrika låsta objekten innan du kastar undantaget igen.
std::lock(_mutex1, _mutex2);