Ricerca…


Osservazioni

Gli stream vengono valutati pigramente, nel senso che possono essere utilizzati per implementare i generatori, che forniranno o "genereranno" un nuovo elemento del tipo specificato su richiesta, piuttosto che prima del fatto. Ciò garantisce che vengano eseguiti solo i calcoli necessari.

Utilizzo di un flusso per generare una sequenza casuale

genRandom crea un flusso di numeri casuali che ha una possibilità su quattro di terminare ogni volta che viene chiamato.

def genRandom: Stream[String] = {
  val random = scala.util.Random.nextFloat()
  println(s"Random value is: $random")
  if (random < 0.25) {
    Stream.empty[String]
  } else {
    ("%.3f : A random number" format random) #:: genRandom
  }
}

lazy val randos = genRandom  // getRandom is lazily evaluated as randos is iterated through

for {
  x <- randos
} println(x) // The number of times this prints is effectively randomized.

Nota il costrutto #:: , che ricorre pigramente : poiché sta anteponendo il numero casuale corrente a uno stream, non valuta il resto del flusso finché non viene iterato.

Stream infiniti tramite ricorsione

Si possono costruire flussi che si riferiscono a se stessi e quindi diventano infinitamente ricorsivi.

// factorial
val fact: Stream[BigInt] = 1 #:: fact.zipWithIndex.map{case (p,x)=>p*(x+1)}
fact.take(10)  // (1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880)
fact(24)       // 620448401733239439360000

// the Fibonacci series
val fib: Stream[BigInt] = 0 #:: fib.scan(1:BigInt)(_+_)
fib.take(10)  // (0, 1, 1, 2, 3, 5, 8, 13, 21, 34)
fib(124)      // 36726740705505779255899443

// random Ints between 10 and 99 (inclusive)
def rndInt: Stream[Int] = (util.Random.nextInt(90)+10) #:: rndInt
rndInt.take(10)  // (20, 95, 14, 44, 42, 78, 85, 24, 99, 85)

In questo contesto, la differenza tra Var, Val e Def è interessante. Come def ogni elemento viene ricalcolato ogni volta che viene referenziato. Come valore val ogni elemento viene mantenuto e riutilizzato dopo che è stato calcolato. Questo può essere dimostrato creando un effetto collaterale con ogni calcolo.

// def with extra output per calculation
def fact: Stream[Int] = 1 #:: fact.zipWithIndex.map{case (p,x)=>print("!");p*(x+1)}
fact(5)  // !!!!!!!!!!!!!!! 120
fact(4)  // !!!!!!!!!! 24
fact(7)  // !!!!!!!!!!!!!!!!!!!!!!!!!!!! 5040

// now as val
val fact: Stream[Int] = 1 #:: fact.zipWithIndex.map{case (p,x)=>print("!");p*(x+1)}
fact(5)  // !!!!! 120
fact(4)  // 24
fact(7)  // !! 5040

Questo spiega anche perché il numero casuale Stream non funziona come val .

val rndInt: Stream[Int] = (util.Random.nextInt(90)+10) #:: rndInt
rndInt.take(5)  // (79, 79, 79, 79, 79)

Stream infinito autoreferenziale

// Generate stream that references itself in its evaluation
lazy val primes: Stream[Int] =
  2 #:: Stream.from(3, 2)
    .filter { i => primes.takeWhile(p => p * p <= i).forall(i % _ != 0) }
    .takeWhile(_ > 0) // prevent overflowing

// Get list of 10 primes
assert(primes.take(10).toList == List(2, 3, 5, 7, 11, 13, 17, 19, 23, 29))

// Previously calculated values were memoized, as shown by toString
assert(primes.toString == "Stream(2, 3, 5, 7, 11, 13, 17, 19, 23, 29, ?)")


Modified text is an extract of the original Stack Overflow Documentation
Autorizzato sotto CC BY-SA 3.0
Non affiliato con Stack Overflow