F#
Flussi di lavoro di sequenza
Ricerca…
resa e resa!
Nei flussi di lavoro in sequenza, la yield
aggiunge un singolo elemento alla sequenza che si sta costruendo. (Nella terminologia monadica, è il return
.)
> seq { yield 1; yield 2; yield 3 }
val it: seq<int> = seq [1; 2; 3]
> let homogenousTup2ToSeq (a, b) = seq { yield a; yield b }
> tup2Seq ("foo", "bar")
val homogenousTup2ToSeq: 'a * 'a -> seq<'a>
val it: seq<string> = seq ["foo"; "bar"]
yield!
(pronunciato bang di rendimento ) inserisce tutti gli elementi di un'altra sequenza in questa sequenza in fase di costruzione. O, in altre parole, aggiunge una sequenza. (In relazione alle monadi, è bind
.)
> seq { yield 1; yield! [10;11;12]; yield 20 }
val it: seq<int> = seq [1; 10; 11; 12; 20]
// Creates a sequence containing the items of seq1 and seq2 in order
> let concat seq1 seq2 = seq { yield! seq1; yield! seq2 }
> concat ['a'..'c'] ['x'..'z']
val concat: seq<'a> -> seq<'a> -> seq<'a>
val it: seq<int> = seq ['a'; 'b'; 'c'; 'x'; 'y'; 'z']
Le sequenze create dai flussi di lavoro di sequenza sono anche pigre, il che significa che gli elementi della sequenza non vengono effettivamente valutati fino a quando non sono necessari. Alcuni modi per forzare gli elementi includono chiamare Seq.take
(tira i primi n elementi in una sequenza), Seq.iter
(applica una funzione a ciascun elemento per l'esecuzione di effetti collaterali), o Seq.toList
(converte una sequenza in una lista) . Combinare questo con la ricorsione è dove yield!
inizia davvero a brillare.
> let rec numbersFrom n = seq { yield n; yield! numbersFrom (n + 1) }
> let naturals = numbersFrom 0
val numbersFrom: int -> seq<int>
val naturals: seq<int> = seq [0; 1; 2; ...]
// Just like Seq.map: applies a mapping function to each item in a sequence to build a new sequence
> let rec map f seq1 =
if Seq.isEmpty seq1 then Seq.empty
else seq { yield f (Seq.head seq1); yield! map f (Seq.tail seq1) }
> map (fun x -> x * x) [1..10]
val map: ('a -> 'b) -> seq<'a> -> 'b
val it: seq<int> = seq [1; 4; 9; 16; 25; 36; 49; 64; 81; 100]
per
for
espressione in sequenza è progettato per assomigliare proprio al suo cugino più famoso, l'imperativo for-loop. "Scorre" attraverso una sequenza e valuta il corpo di ogni iterazione nella sequenza che sta generando. Proprio come tutte le sequenze correlate, NON è mutabile.
> let oneToTen = seq { for x in 1..10 -> x }
val oneToTen: seq<int> = seq [1; 2; 3; 4; 5; 6; 7; 8; 9; 10]
// Or, equivalently:
> let oneToTen = seq { for x in 1..10 do yield x }
val oneToTen: seq<int> = seq [1; 2; 3; 4; 5; 6; 7; 8; 9; 10]
// Just like Seq.map: applies a mapping function to each item in a sequence to build a new sequence
> let map mapping seq1 = seq { for x in seq1 do yield mapping x }
> map (fun x -> x * x) [1..10]
val map: ('a -> 'b) -> seq<'a> -> seq<'b>
val it: seq<int> = seq [1; 4; 9; 16; 25; 36; 49; 64; 81; 100]
// An infinite sequence of consecutive integers starting at 0
> let naturals =
let numbersFrom n = seq { yield n; yield! numbersFrom (n + 1) }
numbersFrom 0
// Just like Seq.filter: returns a sequence consisting only of items from the input sequence that satisfy the predicate
> let filter predicate seq1 = seq { for x in seq1 do if predicate x then yield x }
> let evenNaturals = naturals |> filter (fun x -> x % 2 = 0)
val naturals: seq<int> = seq [1; 2; 3; ...]
val filter: ('a -> bool) -> seq<'a> -> seq<'a>
val evenNaturals: seq<int> = seq [2; 4; 6; ...]
// Just like Seq.concat: concatenates a collection of sequences together
> let concat seqSeq = seq { for seq in seqSeq do yield! seq }
> concat [[1;2;3];[10;20;30]]
val concat: seq<#seq<'b>> -> seq<'b>
val it: seq<int> = seq [1; 2; 3; 10; 20; 30]