Recherche…


Introduction

Le type Option<T> est l'équivalent de Rust des types nullables, sans tous les problèmes qui l'accompagnent. La majorité des langages de type C permettent à toute variable d'être null s'il n'y a pas de données présentes, mais le type Option est inspiré par les langages fonctionnels qui favorisent les «optionnels» (par exemple, la monade Haskell's Maybe ). L'utilisation des types Option vous permettra d'exprimer l'idée que les données peuvent ou non être présentes (puisque Rust n'a pas de types nullables).

Création d'une valeur d'option et d'une correspondance de modèle

// The Option type can either contain Some value or None.
fn find(value: i32, slice: &[i32]) -> Option<usize> {
    for (index, &element) in slice.iter().enumerate() {
        if element == value {
            // Return a value (wrapped in Some).
            return Some(index);
        }
    }
    // Return no value.
    None
}

fn main() {
    let array = [1, 2, 3, 4, 5];
    // Pattern match against the Option value.
    if let Some(index) = find(2, &array) {
        // Here, there is a value.
        println!("The element 2 is at index {}.", index);
    }

    // Check if the result is None (no value).
    if let None = find(12, &array) {
        // Here, there is no value.
        println!("The element 12 is not in the array.");
    }

    // You can also use `is_some` and `is_none` helpers
    if find(12, &array).is_none() {
        println!("The element 12 is not in the array.");
    }
}

Destructurer une option

fn main() {
    let maybe_cake = Some("Chocolate cake");
    let not_cake = None;

    // The unwrap method retrieves the value from the Option
    // and panics if the value is None
    println!("{}", maybe_cake.unwrap());

    // The expect method works much like the unwrap method,
    // but panics with a custom, user provided message.
    println!("{}", not_cake.expect("The cake is a lie."));

    // The unwrap_or method can be used to provide a default value in case
    // the value contained within the option is None. This example would
    // print "Cheesecake".
    println!("{}", not_cake.unwrap_or("Cheesecake"));

    // The unwrap_or_else method works like the unwrap_or method,
    // but allows us to provide a function which will return the
    // fallback value. This example would print "Pumpkin Cake".
    println!("{}", not_cake.unwrap_or_else(|| { "Pumpkin Cake" }));

    // A match statement can be used to safely handle the possibility of none.
    match maybe_cake {
        Some(cake) => println!("{} was consumed.", cake),
        None       => println!("There was no cake.")
    }

    // The if let statement can also be used to destructure an Option.
    if let Some(cake) = maybe_cake {
        println!("{} was consumed.", cake);
    }
}

Déballer une référence à une option possédant son contenu

Une référence à une option &Option<T> ne peut pas être dépliée si le type T n'est pas copiable. La solution consiste à modifier l’option &Option<&T> utilisant as_ref() .

Rust interdit le transfert de propriété des objets pendant que les objets sont empruntés. Lorsque l’option elle-même est empruntée ( &Option<T> ), son contenu est également - indirectement - emprunté.

#[derive(Debug)]
struct Foo;
 
fn main() {
    let wrapped = Some(Foo);
    let wrapped_ref = &wrapped;
    
    println!("{:?}", wrapped_ref.unwrap()); // Error!
}

ne peut pas sortir du contenu emprunté [--expliquer E0507]

Cependant, il est possible de créer une référence au contenu de l' Option<T> . La méthode as_ref() de Option renvoie une option pour &T , qui peut être déballée sans transfert de propriété:

println!("{:?}", wrapped_ref.as_ref().unwrap());

Utiliser Option avec map et and_then

L'opération de map est un outil utile pour travailler avec des tableaux et des vecteurs, mais elle peut également être utilisée pour gérer les valeurs des Option de manière fonctionnelle.

fn main() {

    // We start with an Option value (Option<i32> in this case).
    let some_number = Some(9);

    // Let's do some consecutive calculations with our number.
    // The crucial point here is that we don't have to unwrap
    // the content of our Option type - instead, we're just
    // transforming its content. The result of the whole operation
    // will still be an Option<i32>. If the initial value of
    // 'some_number' was 'None' instead of 9, then the result
    //  would also be 'None'.
    let another_number = some_number
        .map(|n| n - 1) // => Some(8)
        .map(|n| n * n) // => Some(64)
        .and_then(|n| divide(n, 4)); // => Some(16)

    // In the last line above, we're doing a division using a helper
    // function (definition: see bottom).
    // 'and_then' is very similar to 'map', but allows us to pass a
    // function which returns an Option type itself. To ensure that we
    // don't end up with Option<Option<i32>>, 'and_then' flattens the
    // result (in other languages, 'and_then' is also known as 'flatmap').

    println!("{}", to_message(another_number));
    // => "16 is definitely a number!"

    // For the sake of completeness, let's check the result when
    // dividing by zero.
    let final_number = another_number
        .and_then(|n| divide(n, 0)); // => None

    println!("{}", to_message(final_number));
    // => "None!"
}

// Just a helper function for integer division. In case
// the divisor is zero, we'll get 'None' as result.
fn divide(number: i32, divisor: i32) -> Option<i32> {
    if divisor != 0  { Some(number/divisor) } else { None }
}

// Creates a message that tells us whether our
// Option<i32> contains a number or not. There are other
// ways to achieve the same result, but let's just use
// map again!
fn to_message(number: Option<i32>) -> String {
    number
        .map(|n| format!("{} is definitely a number!", n)) // => Some("...")
        .unwrap_or("None!".to_string()) // => "..."
}


Modified text is an extract of the original Stack Overflow Documentation
Sous licence CC BY-SA 3.0
Non affilié à Stack Overflow