Buscar..


Lectura de datos de BigQuery con credenciales de cuenta de usuario

In [1]: import pandas as pd

Para ejecutar una consulta en BigQuery necesita tener su propio proyecto de BigQuery. Podemos solicitar algunos datos de muestra públicos:

In [2]: data = pd.read_gbq('''SELECT title, id, num_characters
   ...:                       FROM [publicdata:samples.wikipedia]
   ...:                       LIMIT 5'''
   ...:                    , project_id='<your-project-id>')

Esto imprimirá:

Your browser has been opened to visit:

    https://accounts.google.com/o/oauth2/v2/auth...[looong url cutted]

If your browser is on a different machine then exit and re-run this
application with the command-line parameter

  --noauth_local_webserver

Si está operando desde una máquina local, entonces aparecerá el navegador. Después de otorgar privilegios, los pandas continuarán con la salida:

Authentication successful.
Requesting query... ok.
Query running...
Query done.
Processed: 13.8 Gb

Retrieving results...
Got 5 rows.

Total time taken 1.5 s.
Finished at 2016-08-23 11:26:03.

Resultado:

In [3]: data
Out[3]: 
               title       id  num_characters
0       Fusidic acid   935328            1112
1     Clark Air Base   426241            8257
2  Watergate scandal    52382           25790
3               2005    35984           75813
4               .BLP  2664340            1659

Como efecto secundario, los pandas crearán el archivo json bigquery_credentials.dat que le permitirá ejecutar más consultas sin necesidad de otorgar privilegios:

In [9]: pd.read_gbq('SELECT count(1) cnt FROM [publicdata:samples.wikipedia]'
                   , project_id='<your-project-id>')
Requesting query... ok.
[rest of output cutted]

Out[9]: 
         cnt
0  313797035

Lectura de datos de BigQuery con credenciales de cuenta de servicio

Si ha creado una cuenta de servicio y tiene un archivo json de clave privada para ella, puede usar este archivo para autenticarse con pandas

In [5]: pd.read_gbq('''SELECT corpus, sum(word_count) words
                       FROM [bigquery-public-data:samples.shakespeare]       
                       GROUP BY corpus                                
                       ORDER BY words desc
                       LIMIT 5'''
                   , project_id='<your-project-id>'
                   , private_key='<private key json contents or file path>')
Requesting query... ok.
[rest of output cutted]

Out[5]: 
           corpus  words
0          hamlet  32446
1  kingrichardiii  31868
2      coriolanus  29535
3       cymbeline  29231
4    2kinghenryiv  28241


Modified text is an extract of the original Stack Overflow Documentation
Licenciado bajo CC BY-SA 3.0
No afiliado a Stack Overflow