data.table
Remodelación, apilado y fraccionamiento.
Buscar..
Observaciones
La viñeta oficial, "Remodelación eficiente utilizando data.tables" , es la mejor introducción a este tema.
Muchas tareas de remodelación requieren moverse entre formatos largos y anchos:
- Los datos anchos son datos con cada columna que representa una variable separada, y filas que representan observaciones separadas
- Los datos largos son datos con el ID de formulario | variable | valor, donde cada fila representa un par de observación-variable
fundir y fundir con data.table
data.table
ofrece una amplia gama de posibilidades para remodelar sus datos de manera eficiente y fácil
Por ejemplo, mientras se remodela de largo a ancho, ambos pueden pasar varias variables a value.var
y a los parámetros fun.aggregate
al mismo tiempo
library(data.table) #v>=1.9.6
DT <- data.table(mtcars)
Largo a ancho
dcast(DT, gear ~ cyl, value.var = c("disp", "hp"), fun = list(mean, sum))
gear disp_mean_4 disp_mean_6 disp_mean_8 hp_mean_4 hp_mean_6 hp_mean_8 disp_sum_4 disp_sum_6 disp_sum_8 hp_sum_4 hp_sum_6 hp_sum_8
1: 3 120.100 241.5 357.6167 97 107.5 194.1667 120.1 483.0 4291.4 97 215 2330
2: 4 102.625 163.8 NaN 76 116.5 NaN 821.0 655.2 0.0 608 466 0
3: 5 107.700 145.0 326.0000 102 175.0 299.5000 215.4 145.0 652.0 204 175 599
Esto establecerá el gear
como la columna de índice, mientras que la mean
y la sum
se calcularán para disp
y hp
para cada combinación de gear
y cyl
. En caso de que no existan algunas combinaciones, puede especificar parámetros adicionales como na.rm = TRUE
(que se pasará a mean
funciones de mean
y sum
) o especificar el argumento de fill
incorporado. También puede agregar márgenes, eliminar combinaciones que faltan y subcontratar los datos. Ver más en ?data.table::dcast
Ancho a largo
Mientras cambia de ancho a largo, puede pasar columnas al parámetro measure.vars
usando expresiones regulares, por ejemplo
print(melt(DT, c("cyl", "gear"), measure = patterns("^d", "e")), n = 10)
cyl gear variable value1 value2
1: 6 4 1 160.00 16.46
2: 6 4 1 160.00 17.02
3: 4 4 1 108.00 18.61
4: 6 3 1 258.00 19.44
5: 8 3 1 360.00 17.02
---
60: 4 5 2 3.77 5.00
61: 8 5 2 4.22 5.00
62: 6 5 2 3.62 5.00
63: 8 5 2 3.54 5.00
64: 4 4 2 4.11 4.00
Esto melt
los datos por cyl
y gear
como las columnas de índice, mientras que todos los valores para las variables que comienzan con d
( disp
& drat
) estarán presentes en value1
y los valores para las variables que contienen la letra e
en ellos ( qsec
y gear
) estarán presentes en la columna value2
.
También puede cambiar el nombre de todos los nombres de columna en el resultado al especificar los argumentos variable.name
y value.name
o decidir si desea que las columnas de character
se conviertan automáticamente en factor
s o no al especificar los argumentos variable.factor
y value.factor
. Ver más en ?data.table::melt
Remodelar usando `data.table`
data.table
extiende las reshape2
de melt
y dcast
( Referencia: remodelación eficiente utilizando data.tables )
library(data.table)
## generate some data
dt <- data.table(
name = rep(c("firstName", "secondName"), each=4),
numbers = rep(1:4, 2),
value = rnorm(8)
)
dt
# name numbers value
# 1: firstName 1 -0.8551881
# 2: firstName 2 -1.0561946
# 3: firstName 3 0.2671833
# 4: firstName 4 1.0662379
# 5: secondName 1 -0.4771341
# 6: secondName 2 1.2830651
# 7: secondName 3 -0.6989682
# 8: secondName 4 -0.6592184
Largo a ancho
dcast(data = dt,
formula = name ~ numbers,
value.var = "value")
# name 1 2 3 4
# 1: firstName 0.1836433 -0.8356286 1.5952808 0.3295078
# 2: secondName -0.8204684 0.4874291 0.7383247 0.5757814
En columnas múltiples (a partir de data.table
1.9.6)
## add an extra column
dt[, value2 := value * 2]
## cast multiple value columns
dcast(data = dt,
formula = name ~ numbers,
value.var = c("value", "value2"))
# name value_1 value_2 value_3 value_4 value2_1 value2_2 value2_3 value2_4
# 1: firstName 0.1836433 -0.8356286 1.5952808 0.3295078 0.3672866 -1.6712572 3.190562 0.6590155
# 2: secondName -0.8204684 0.4874291 0.7383247 0.5757814 -1.6409368 0.9748581 1.476649 1.1515627
Ancho a largo
## use a wide data.table
dt <- fread("name 1 2 3 4
firstName 0.1836433 -0.8356286 1.5952808 0.3295078
secondName -0.8204684 0.4874291 0.7383247 0.5757814", header = T)
dt
# name 1 2 3 4
# 1: firstName 0.1836433 -0.8356286 1.5952808 0.3295078
# 2: secondName -0.8204684 0.4874291 0.7383247 0.5757814
## melt to long, specifying the id column, and the name of the columns
## in the resulting long data.table
melt(dt,
id.vars = "name",
variable.name = "numbers",
value.name = "myValue")
# name numbers myValue
# 1: firstName 1 0.1836433
# 2: secondName 1 -0.8204684
# 3: firstName 2 -0.8356286
# 4: secondName 2 0.4874291
# 5: firstName 3 1.5952808
# 6: secondName 3 0.7383247
# 7: firstName 4 0.3295078
# 8: secondName 4 0.5757814
Pasando de formato ancho a largo usando melt
Derritiendo: Los fundamentos
La fusión se utiliza para transformar datos de formato ancho a largo.
Comenzando con un amplio conjunto de datos:
DT = data.table(ID = letters[1:3], Age = 20:22, OB_A = 1:3, OB_B = 4:6, OB_C = 7:9)
Podemos fundir nuestros datos utilizando la función de melt
en data.table. Esto devuelve otra tabla de datos en formato largo:
melt(DT, id.vars = c("ID","Age"))
1: a 20 OB_A 1
2: b 21 OB_A 2
3: c 22 OB_A 3
4: a 20 OB_B 4
5: b 21 OB_B 5
6: c 22 OB_B 6
7: a 20 OB_C 7
8: b 21 OB_C 8
9: c 22 OB_C 9
class(melt(DT, id.vars = c("ID","Age")))
# "data.table" "data.frame"
Se asume que las columnas que no id.vars
establecidas en el parámetro id.vars
son variables. Alternativamente, podemos establecer estos explícitamente usando el argumento measure.vars
:
melt(DT, measure.vars = c("OB_A","OB_B","OB_C"))
ID Age variable value
1: a 20 OB_A 1
2: b 21 OB_A 2
3: c 22 OB_A 3
4: a 20 OB_B 4
5: b 21 OB_B 5
6: c 22 OB_B 6
7: a 20 OB_C 7
8: b 21 OB_C 8
9: c 22 OB_C 9
En este caso, se asume que todas las columnas no establecidas en measure.vars
son ID.
Si configuramos ambos explícitamente, solo devolverá las columnas seleccionadas:
melt(DT, id.vars = "ID", measure.vars = c("OB_C"))
ID variable value
1: a OB_C 7
2: b OB_C 8
3: c OB_C 9
Nombrando variables y valores en el resultado.
Podemos manipular los nombres de columna de la tabla devuelta usando variable.name
y value.name
melt(DT,
id.vars = c("ID"),
measure.vars = c("OB_C"),
variable.name = "Test",
value.name = "Result"
)
ID Test Result
1: a OB_C 7
2: b OB_C 8
3: c OB_C 9
Configuración de tipos de variables de medida en el resultado.
Por defecto, la fusión de una data.table convierte todos los measure.vars
de factores:
M_DT <- melt(DT,id.vars = c("ID"), measure.vars = c("OB_C"))
class(M_DT[, variable])
# "factor"
Para establecer como carácter en su lugar, use el argumento variable.factor
:
M_DT <- melt(DT,id.vars = c("ID"), measure.vars = c("OB_C"), variable.factor = FALSE)
class(M_DT[, variable])
# "character"
Los valores generalmente se heredan del tipo de datos de la columna de origen:
class(DT[, value])
# "integer"
class(M_DT[, value])
# "integer"
Si hay un conflicto, los tipos de datos serán coaccionados. Por ejemplo:
M_DT <- melt(DT,id.vars = c("Age"), measure.vars = c("ID","OB_C"))
class(M_DT[, value])
# "character"
Al fundirse, cualquier variable factor será coaccionada al tipo de carácter:
DT[, OB_C := factor(OB_C)]
M_DT <- melt(DT,id.vars = c("ID"), measure.vars = c("OB_C"))
class(M_DT)
# "character"
Para evitar esto y conservar la escritura inicial, use el argumento value.factor
:
M_DT <- melt(DT,id.vars = c("ID"), measure.vars = c("OB_C"), value.factor = TRUE)
class(M_DT)
# "factor"
Manejo de valores perdidos
Por defecto, cualquier valor de NA
se conserva en los datos fundidos.
DT = data.table(ID = letters[1:3], Age = 20:22, OB_A = 1:3, OB_B = 4:6, OB_C = c(7:8,NA))
melt(DT,id.vars = c("ID"), measure.vars = c("OB_C"))
ID variable value
1: a OB_C 7
2: b OB_C 8
3: c OB_C NA
Si se deben eliminar de sus datos, establezca na.rm = TRUE
melt(DT,id.vars = c("ID"), measure.vars = c("OB_C"), na.rm = TRUE)
ID variable value
1: a OB_C 7
2: b OB_C 8
Pasando de formato largo a ancho usando dcast
Casting: Los fundamentos
La conversión se utiliza para transformar datos de formato largo a ancho.
Comenzando con un conjunto de datos largo:
DT = data.table(ID = rep(letters[1:3],3), Age = rep(20:22,3), Test = rep(c("OB_A","OB_B","OB_C"), each = 3), Result = 1:9)
Podemos echar nuestras datos utilizando el dcast
función en data.table. Esto devuelve otra tabla de datos en formato ancho:
dcast(DT, formula = ID ~ Test, value.var = "Result")
ID OB_A OB_B OB_C
1: a 1 4 7
2: b 2 5 8
3: c 3 6 9
class(dcast(DT, formula = ID ~ Test, value.var = "Result"))
[1] "data.table" "data.frame"
Lanzar un valor
Un argumento value.var
es necesario para una value.var
adecuada; si no se proporciona, el dcast se basará en sus datos.
dcast(DT, formula = ID ~ Test, value.var = "Result")
ID OB_A OB_B OB_C
1: a 1 4 7
2: b 2 5 8
3: c 3 6 9
ID OB_A OB_B OB_C
1: a 20 20 20
2: b 21 21 21
3: c 22 22 22
Se pueden proporcionar múltiples value.var
s en una lista
dcast(DT, formula = ID ~ Test, value.var = list("Result","Age"))
ID Result_OB_A Result_OB_B Result_OB_C Age_OB_A Age_OB_B Age_OB_C
1: a 1 4 7 20 20 20
2: b 2 5 8 21 21 21
3: c 3 6 9 22 22 22
Fórmula
El casting se controla mediante el argumento de fórmula en dcast
. Esto es de la forma ROWS ~ COLUMNAS
dcast(DT, formula = ID ~ Test, value.var = "Result")
ID OB_A OB_B OB_C
1: a 1 4 7
2: b 2 5 8
3: c 3 6 9
dcast(DT, formula = Test ~ ID, value.var = "Result")
Test a b c
1: OB_A 1 2 3
2: OB_B 4 5 6
3: OB_C 7 8 9
Tanto las filas como las columnas se pueden expandir con otras variables usando +
dcast(DT, formula = ID + Age ~ Test, value.var = "Result")
ID Age OB_A OB_B OB_C
1: a 20 1 4 7
2: b 21 2 5 8
3: c 22 3 6 9
dcast(DT, formula = ID ~ Age + Test, value.var = "Result")
ID 20_OB_A 20_OB_B 20_OB_C 21_OB_A 21_OB_B 21_OB_C 22_OB_A 22_OB_B 22_OB_C
1: a 1 4 7 NA NA NA NA NA NA
2: b NA NA NA 2 5 8 NA NA NA
3: c NA NA NA NA NA NA 3 6 9
#order is important
dcast(DT, formula = ID ~ Test + Age, value.var = "Result")
ID OB_A_20 OB_A_21 OB_A_22 OB_B_20 OB_B_21 OB_B_22 OB_C_20 OB_C_21 OB_C_22
1: a 1 NA NA 4 NA NA 7 NA NA
2: b NA 2 NA NA 5 NA NA 8 NA
3: c NA NA 3 NA NA 6 NA NA 9
El lanzamiento a menudo puede crear celdas donde no existe observación en los datos. Por defecto, esto se denota por NA
, como se indica arriba. Podemos anular esto con el argumento fill=
.
dcast(DT, formula = ID ~ Test + Age, value.var = "Result", fill = 0)
ID OB_A_20 OB_A_21 OB_A_22 OB_B_20 OB_B_21 OB_B_22 OB_C_20 OB_C_21 OB_C_22
1: a 1 0 0 4 0 0 7 0 0
2: b 0 2 0 0 5 0 0 8 0
3: c 0 0 3 0 0 6 0 0 9
También puede usar dos variables especiales en el objeto de fórmula
-
.
no representa otras variables -
...
representa todas las demás variables
dcast(DT, formula = Age ~ ., value.var = "Result")
Age .
1: 20 3
2: 21 3
3: 22 3
dcast(DT, formula = ID + Age ~ ..., value.var = "Result")
ID Age OB_A OB_B OB_C
1: a 20 1 4 7
2: b 21 2 5 8
3: c 22 3 6 9
Agregando nuestro valor.
También podemos emitir y agregar valores en un solo paso. En este caso, tenemos tres observaciones en cada una de las intersecciones de Edad e ID. Para establecer qué agregación queremos, usamos el argumento fun.aggregate
:
#length
dcast(DT, formula = ID ~ Age, value.var = "Result", fun.aggregate = length)
ID 20 21 22
1: a 3 0 0
2: b 0 3 0
3: c 0 0 3
#sum
dcast(DT, formula = ID ~ Age, value.var = "Result", fun.aggregate = sum)
ID 20 21 22
1: a 12 0 0
2: b 0 15 0
3: c 0 0 18
#concatenate
dcast(DT, formula = ID ~ Age, value.var = "Result", fun.aggregate = function(x){paste(x,collapse = "_")})
ID 20 21 22
1: a 1_4_7
2: b 2_5_8
3: c 3_6_9
También podemos pasar una lista a fun.aggregate
para usar múltiples funciones
dcast(DT, formula = ID ~ Age, value.var = "Result", fun.aggregate = list(sum,length))
ID Result_sum_20 Result_sum_21 Result_sum_22 Result_length_20 Result_length_21 Result_length_22
1: a 12 0 0 3 0 0
2: b 0 15 0 0 3 0
3: c 0 0 18 0 0 3
Si pasamos más de una función y más de un valor, podemos calcular todas las combinaciones pasando un vector de value.vars
dcast(DT, formula = ID ~ Age, value.var = c("Result","Test"), fun.aggregate = list(function(x){paste0(x,collapse = "_")},length))
ID Result_function_20 Result_function_21 Result_function_22 Test_function_20 Test_function_21 Test_function_22 Result_length_20 Result_length_21
1: a 1_4_7 OB_A_OB_B_OB_C 3 0
2: b 2_5_8 OB_A_OB_B_OB_C 0 3
3: c 3_6_9 OB_A_OB_B_OB_C 0 0
Result_length_22 Test_length_20 Test_length_21 Test_length_22
1: 0 3 0 0
2: 0 0 3 0
3: 3 0 0 3
donde cada par se calcula en el orden value1_formula1, value1_formula2, ... , valueN_formula(N-1), valueN_formulaN
.
Alternativamente, podemos evaluar nuestros valores y funciones uno a uno al pasar 'value.var' como una lista:
dcast(DT, formula = ID ~ Age, value.var = list("Result","Test"), fun.aggregate = list(function(x){paste0(x,collapse = "_")},length))
ID Result_function_20 Result_function_21 Result_function_22 Test_length_20 Test_length_21 Test_length_22
1: a 1_4_7 3 0 0
2: b 2_5_8 0 3 0
3: c 3_6_9 0 0 3
Nombrando columnas en el resultado
De forma predeterminada, los componentes de nombre de columna están separados por un guión bajo _
. Esto puede ser anulado manualmente usando el argumento sep=
:
dcast(DT, formula = Test ~ ID + Age, value.var = "Result")
Test a_20 b_21 c_22
1: OB_A 1 2 3
2: OB_B 4 5 6
3: OB_C 7 8 9
dcast(DT, formula = Test ~ ID + Age, value.var = "Result", sep = ",")
Test a,20 b,21 c,22
1: OB_A 1 2 3
2: OB_B 4 5 6
3: OB_C 7 8 9
Esto fun.aggregate
cualquier fun.aggregate
o value.var
que usemos:
dcast(DT, formula = Test ~ ID + Age, value.var = "Result", fun.aggregate = c(sum,length), sep = ",")
Test Result,sum,a,20 Result,sum,b,21 Result,sum,c,22 Result,length,a,20 Result,length,b,21 Result,length,c,22
1: OB_A 1 2 3 1 1 1
2: OB_B 4 5 6 1 1 1
3: OB_C 7 8 9 1 1 1
Apilando múltiples tablas usando rbindlist
Un refrán común en R va en esta línea:
No debe tener un montón de tablas relacionadas con nombres como
DT1
,DT2
, ...,DT11
. Literalmente, leer y asignar objetos a los objetos es complicado. La solución es una lista de tablas de datos!
Una lista así parece
set.seed(1)
DT_list = lapply(setNames(1:3, paste0("D", 1:3)), function(i)
data.table(id = 1:2, v = sample(letters, 2)))
$D1
id v
1: 1 g
2: 2 j
$D2
id v
1: 1 o
2: 2 w
$D3
id v
1: 1 f
2: 2 w
Otra perspectiva es que debe almacenar estas tablas juntas como una tabla , apilándolas. Esto es sencillo de hacer usando rbindlist
:
DT = rbindlist(DT_list, id="src")
src id v
1: D1 1 g
2: D1 2 j
3: D2 1 o
4: D2 2 w
5: D3 1 f
6: D3 2 w
Este formato tiene mucho más sentido con la sintaxis data.table, donde las operaciones "por grupo" son comunes y directas.
Para una mirada más profunda, la respuesta de Gregor podría ser un buen lugar para comenzar. También echa un vistazo a ?rbindlist
, por supuesto. Hay un ejemplo separado que cubre la lectura en un montón de tablas de CSV y luego las apila .