tensorflow
Minimalistischer Beispielcode für verteilten Tensorflow.
Suche…
Einführung
Dieses Dokument zeigt, wie ein Cluster von TensorFlow-Servern erstellt wird und wie ein Berechnungsgraph über diesen Cluster verteilt wird.
Verteiltes Schulungsbeispiel
import tensorflow as tf
FLAGS = None
def main(_):
ps_hosts = FLAGS.ps_hosts.split(",")
worker_hosts = FLAGS.worker_hosts.split(",")
# Create a cluster from the parameter server and worker hosts.
cluster = tf.train.ClusterSpec({"ps": ps_hosts, "worker": worker_hosts})
# Create and start a server for the local task.
server = tf.train.Server(cluster, job_name=FLAGS.job_name, task_index=FLAGS.task_index)
if FLAGS.job_name == "ps":
server.join()
elif FLAGS.job_name == "worker":
# Assigns ops to the local worker by default.
with tf.device(tf.train.replica_device_setter(worker_device="/job:worker/task:%d" % FLAGS.task_index, cluster=cluster)):
# Build model...
loss = ...
global_step = tf.contrib.framework.get_or_create_global_step()
train_op = tf.train.AdagradOptimizer(0.01).minimize(loss, global_step=global_step)
# The StopAtStepHook handles stopping after running given steps.
hooks=[tf.train.StopAtStepHook(last_step=1000000)]
# The MonitoredTrainingSession takes care of session initialization,
# restoring from a checkpoint, saving to a checkpoint, and closing when done
# or an error occurs.
with tf.train.MonitoredTrainingSession(master=server.target,
is_chief=(FLAGS.task_index == 0),
checkpoint_dir="/tmp/train_logs",
hooks=hooks) as mon_sess:
while not mon_sess.should_stop():
# Run a training step asynchronously.
# See `tf.train.SyncReplicasOptimizer` for additional details on how to perform *synchronous* training.
# mon_sess.run handles AbortedError in case of preempted PS.
mon_sess.run(train_op)
Modified text is an extract of the original Stack Overflow Documentation
Lizenziert unter CC BY-SA 3.0
Nicht angeschlossen an Stack Overflow