machine-learning
Komma igång med Machine Learning med Apache spark MLib
Sök…
Introduktion
Apache spark MLib tillhandahåller (JAVA, R, PYTHON, SCALA) 1.) Olika maskininlärningsalgoritmer för regression, klassificering, klustering, samarbetsfiltrering som oftast används metoder för maskininlärning. 2.) Det stöder funktionsutdrag, transformation etc. 3.) Det gör det möjligt för datapraktiker att lösa sina maskininlärningsproblem (såväl som grafberäkning, strömning och interaktiv frågeställning i realtid) interaktivt och i mycket större skala.
Anmärkningar
Se nedan för att veta mer om spark MLib
Skriv ditt första klassificeringsproblem med Logistic Regression-modellen
Jag använder förmörkelse här, och du måste lägga till under givet beroende till din pom.xml
1.) POM.XML
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.predection.classification</groupId>
<artifactId>logisitcRegression</artifactId>
<version>0.0.1-SNAPSHOT</version>
<packaging>jar</packaging>
<name>logisitcRegression</name>
<url>http://maven.apache.org</url>
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
</properties>
<dependencies>
<!-- Spark -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>2.1.0</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-mllib_2.10</artifactId>
<version>2.1.0</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.11</artifactId>
<version>2.1.0</version>
</dependency>
</dependencies>
</project>
2.) APP.JAVA (din applikationsklass)
Vi gör klassificering baserat på land, timmar och vår etikett klickas.
package com.predection.classification.logisitcRegression;
import org.apache.spark.SparkConf;
import org.apache.spark.ml.classification.LogisticRegression;
import org.apache.spark.ml.classification.LogisticRegressionModel;
import org.apache.spark.ml.feature.StringIndexer;
import org.apache.spark.ml.feature.VectorAssembler;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;
import java.util.Arrays;
import java.util.List;
import org.apache.spark.sql.RowFactory;
import static org.apache.spark.sql.types.DataTypes.*;
/**
* Classification problem using Logistic Regression Model
*
*/
public class App
{
public static void main( String[] args )
{
SparkConf sparkConf = new SparkConf().setAppName("JavaLogisticRegressionExample");
// Creating spark session
SparkSession sparkSession = SparkSession.builder().config(sparkConf).getOrCreate();
StructType schema = createStructType(new StructField[]{
createStructField("id", IntegerType, false),
createStructField("country", StringType, false),
createStructField("hour", IntegerType, false),
createStructField("clicked", DoubleType, false)
});
List<Row> data = Arrays.asList(
RowFactory.create(7, "US", 18, 1.0),
RowFactory.create(8, "CA", 12, 0.0),
RowFactory.create(9, "NZ", 15, 1.0),
RowFactory.create(10,"FR", 8, 0.0),
RowFactory.create(11, "IT", 16, 1.0),
RowFactory.create(12, "CH", 5, 0.0),
RowFactory.create(13, "AU", 20, 1.0)
);
Dataset<Row> dataset = sparkSession.createDataFrame(data, schema);
// Using stringindexer transformer to transform string into index
dataset = new StringIndexer().setInputCol("country").setOutputCol("countryIndex").fit(dataset).transform(dataset);
// creating feature vector using dependent variables countryIndex, hours are features and clicked is label
VectorAssembler assembler = new VectorAssembler()
.setInputCols(new String[] {"countryIndex", "hour"})
.setOutputCol("features");
Dataset<Row> finalDS = assembler.transform(dataset);
// Split the data into training and test sets (30% held out for
// testing).
Dataset<Row>[] splits = finalDS.randomSplit(new double[] { 0.7, 0.3 });
Dataset<Row> trainingData = splits[0];
Dataset<Row> testData = splits[1];
trainingData.show();
testData.show();
// Building LogisticRegression Model
LogisticRegression lr = new LogisticRegression().setMaxIter(10).setRegParam(0.3).setElasticNetParam(0.8).setLabelCol("clicked");
// Fit the model
LogisticRegressionModel lrModel = lr.fit(trainingData);
// Transform the model, and predict class for test dataset
Dataset<Row> output = lrModel.transform(testData);
output.show();
}
}
3.) För att köra den här applikationen, först utför mvn-clean-package
på applikationsprojekt, det skulle skapa burk. 4.) Öppna gnistrotkatalogen och skicka det här jobbet
bin/spark-submit --class com.predection.regression.App --master local[2] ./regression-0.0.1-SNAPSHOT.jar(path to the jar file)
5.) Efter att ha skickat se det bygger träningsdata
6.) testdata på samma sätt
7.) Och här är prediktionsresultatet under förutsägelseskolumnen