machine-learning
Rozpoczęcie pracy z uczeniem maszynowym za pomocą Apache Spark MLib
Szukaj…
Wprowadzenie
Iskra Apache MLib zapewnia (JAVA, R, PYTHON, SCALA) 1.) Różne algorytmy uczenia maszynowego dotyczące regresji, klasyfikacji, grupowania, filtrowania grupowego, które są najczęściej stosowane w uczeniu maszynowym. 2.) Obsługuje ekstrakcję funkcji, transformację itp. 3.) Pozwala praktykom danych rozwiązywać problemy uczenia maszynowego (a także obliczanie wykresów, strumieniowanie i interaktywne przetwarzanie zapytań w czasie rzeczywistym) interaktywnie i na znacznie większą skalę.
Uwagi
Poniżej podano dane, aby dowiedzieć się więcej o Spark MLib
Napisz swój pierwszy problem z klasyfikacją za pomocą modelu regresji logistycznej
Korzystam z Eclipse tutaj i musisz dodać poniżej podaną zależność do pliku pom.xml
1.) POM.XML
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.predection.classification</groupId>
<artifactId>logisitcRegression</artifactId>
<version>0.0.1-SNAPSHOT</version>
<packaging>jar</packaging>
<name>logisitcRegression</name>
<url>http://maven.apache.org</url>
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
</properties>
<dependencies>
<!-- Spark -->
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>2.1.0</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-mllib_2.10</artifactId>
<version>2.1.0</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.11</artifactId>
<version>2.1.0</version>
</dependency>
</dependencies>
</project>
2.) APP.JAVA (Twoja klasa aplikacji)
Dokonujemy klasyfikacji na podstawie kraju, godzin i klikamy naszą etykietę.
package com.predection.classification.logisitcRegression;
import org.apache.spark.SparkConf;
import org.apache.spark.ml.classification.LogisticRegression;
import org.apache.spark.ml.classification.LogisticRegressionModel;
import org.apache.spark.ml.feature.StringIndexer;
import org.apache.spark.ml.feature.VectorAssembler;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;
import java.util.Arrays;
import java.util.List;
import org.apache.spark.sql.RowFactory;
import static org.apache.spark.sql.types.DataTypes.*;
/**
* Classification problem using Logistic Regression Model
*
*/
public class App
{
public static void main( String[] args )
{
SparkConf sparkConf = new SparkConf().setAppName("JavaLogisticRegressionExample");
// Creating spark session
SparkSession sparkSession = SparkSession.builder().config(sparkConf).getOrCreate();
StructType schema = createStructType(new StructField[]{
createStructField("id", IntegerType, false),
createStructField("country", StringType, false),
createStructField("hour", IntegerType, false),
createStructField("clicked", DoubleType, false)
});
List<Row> data = Arrays.asList(
RowFactory.create(7, "US", 18, 1.0),
RowFactory.create(8, "CA", 12, 0.0),
RowFactory.create(9, "NZ", 15, 1.0),
RowFactory.create(10,"FR", 8, 0.0),
RowFactory.create(11, "IT", 16, 1.0),
RowFactory.create(12, "CH", 5, 0.0),
RowFactory.create(13, "AU", 20, 1.0)
);
Dataset<Row> dataset = sparkSession.createDataFrame(data, schema);
// Using stringindexer transformer to transform string into index
dataset = new StringIndexer().setInputCol("country").setOutputCol("countryIndex").fit(dataset).transform(dataset);
// creating feature vector using dependent variables countryIndex, hours are features and clicked is label
VectorAssembler assembler = new VectorAssembler()
.setInputCols(new String[] {"countryIndex", "hour"})
.setOutputCol("features");
Dataset<Row> finalDS = assembler.transform(dataset);
// Split the data into training and test sets (30% held out for
// testing).
Dataset<Row>[] splits = finalDS.randomSplit(new double[] { 0.7, 0.3 });
Dataset<Row> trainingData = splits[0];
Dataset<Row> testData = splits[1];
trainingData.show();
testData.show();
// Building LogisticRegression Model
LogisticRegression lr = new LogisticRegression().setMaxIter(10).setRegParam(0.3).setElasticNetParam(0.8).setLabelCol("clicked");
// Fit the model
LogisticRegressionModel lrModel = lr.fit(trainingData);
// Transform the model, and predict class for test dataset
Dataset<Row> output = lrModel.transform(testData);
output.show();
}
}
3.) Aby uruchomić tę aplikację, najpierw wykonaj mvn-clean-package
na projekcie aplikacji, utworzy on jar. 4.) Otwórz katalog główny Spark i prześlij to zadanie
bin/spark-submit --class com.predection.regression.App --master local[2] ./regression-0.0.1-SNAPSHOT.jar(path to the jar file)
5.) Po przesłaniu zobacz, buduje dane treningowe
6.) Dane testowe w ten sam sposób
7.) A oto wynik prognozy w kolumnie prognozy