pandas
Сечения различных осей с помощью MultiIndex
Поиск…
Выбор поперечных сечений с использованием .xs
In [1]:
import pandas as pd
import numpy as np
arrays = [['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'],
['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']]
idx_row = pd.MultiIndex.from_arrays(arrays, names=['Row_First', 'Row_Second'])
idx_col = pd.MultiIndex.from_product([['A','B'], ['i', 'ii']], names=['Col_First','Col_Second'])
df = pd.DataFrame(np.random.randn(8,4), index=idx_row, columns=idx_col)
Out[1]:
Col_First A B
Col_Second i ii i ii
Row_First Row_Second
bar one -0.452982 -1.872641 0.248450 -0.319433
two -0.460388 -0.136089 -0.408048 0.998774
baz one 0.358206 -0.319344 -2.052081 -0.424957
two -0.823811 -0.302336 1.158968 0.272881
foo one -0.098048 -0.799666 0.969043 -0.595635
two -0.358485 0.412011 -0.667167 1.010457
qux one 1.176911 1.578676 0.350719 0.093351
two 0.241956 1.082138 -0.516898 -0.196605
.xs
принимает level
(либо имя указанного уровня, либо целое число), и axis
: 0 для строк, 1 для столбцов.
.xs
доступен как для pandas.Series
и для pandas.DataFrame
.
Выбор по строкам:
In [2]: df.xs('two', level='Row_Second', axis=0)
Out[2]:
Col_First A B
Col_Second i ii i ii
Row_First
bar -0.460388 -0.136089 -0.408048 0.998774
baz -0.823811 -0.302336 1.158968 0.272881
foo -0.358485 0.412011 -0.667167 1.010457
qux 0.241956 1.082138 -0.516898 -0.196605
Выбор по столбцам:
In [3]: df.xs('ii', level=1, axis=1)
Out[3]:
Col_First A B
Row_First Row_Second
bar one -1.872641 -0.319433
two -0.136089 0.998774
baz one -0.319344 -0.424957
two -0.302336 0.272881
foo one -0.799666 -0.595635
two 0.412011 1.010457
qux one 1.578676 0.093351
two 1.082138 -0.196605
.xs
работает только для выбора, назначение НЕ возможно (получение, а не настройка): ¨
In [4]: df.xs('ii', level='Col_Second', axis=1) = 0
File "<ipython-input-10-92e0785187ba>", line 1
df.xs('ii', level='Col_Second', axis=1) = 0
^
SyntaxError: can't assign to function call
Использование .loc и slicers
В отличие от метода .xs
, это позволяет вам присваивать значения. Индексирование с помощью slicers доступно с версии 0.14.0
.
In [1]:
import pandas as pd
import numpy as np
arrays = [['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'],
['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']]
idx_row = pd.MultiIndex.from_arrays(arrays, names=['Row_First', 'Row_Second'])
idx_col = pd.MultiIndex.from_product([['A','B'], ['i', 'ii']], names=['Col_First','Col_Second'])
df = pd.DataFrame(np.random.randn(8,4), index=idx_row, columns=idx_col)
Out[1]:
Col_First A B
Col_Second i ii i ii
Row_First Row_Second
bar one -0.452982 -1.872641 0.248450 -0.319433
two -0.460388 -0.136089 -0.408048 0.998774
baz one 0.358206 -0.319344 -2.052081 -0.424957
two -0.823811 -0.302336 1.158968 0.272881
foo one -0.098048 -0.799666 0.969043 -0.595635
two -0.358485 0.412011 -0.667167 1.010457
qux one 1.176911 1.578676 0.350719 0.093351
two 0.241956 1.082138 -0.516898 -0.196605
Выбор по строкам :
In [2]: df.loc[(slice(None),'two'),:]
Out[2]:
Col_First A B
Col_Second i ii i ii
Row_First Row_Second
bar two -0.460388 -0.136089 -0.408048 0.998774
baz two -0.823811 -0.302336 1.158968 0.272881
foo two -0.358485 0.412011 -0.667167 1.010457
qux two 0.241956 1.082138 -0.516898 -0.196605
Выбор по столбцам:
In [3]: df.loc[:,(slice(None),'ii')]
Out[3]:
Col_First A B
Col_Second ii ii
Row_First Row_Second
bar one -1.872641 -0.319433
two -0.136089 0.998774
baz one -0.319344 -0.424957
two -0.302336 0.272881
foo one -0.799666 -0.595635
two 0.412011 1.010457
qux one 1.578676 0.093351
two 1.082138 -0.196605
Выбор по обоим осям ::
In [4]: df.loc[(slice(None),'two'),(slice(None),'ii')]
Out[4]:
Col_First A B
Col_Second ii ii
Row_First Row_Second
bar two -0.136089 0.998774
baz two -0.302336 0.272881
foo two 0.412011 1.010457
qux two 1.082138 -0.196605
Задание .xs
(в отличие от .xs
):
In [5]: df.loc[(slice(None),'two'),(slice(None),'ii')]=0
df
Out[5]:
Col_First A B
Col_Second i ii i ii
Row_First Row_Second
bar one -0.452982 -1.872641 0.248450 -0.319433
two -0.460388 0.000000 -0.408048 0.000000
baz one 0.358206 -0.319344 -2.052081 -0.424957
two -0.823811 0.000000 1.158968 0.000000
foo one -0.098048 -0.799666 0.969043 -0.595635
two -0.358485 0.000000 -0.667167 0.000000
qux one 1.176911 1.578676 0.350719 0.093351
two 0.241956 0.000000 -0.516898 0.000000
Modified text is an extract of the original Stack Overflow Documentation
Лицензировано согласно CC BY-SA 3.0
Не связан с Stack Overflow