Szukaj…


Uwagi

Oficjalna dokumentacja pand zawiera stronę IO Tools z listą odpowiednich funkcji do odczytu i zapisu do plików, a także kilka przykładów i wspólnych parametrów.

Odczytywanie pliku csv do DataFrame

Przykład odczytu pliku data_file.csv takiego jak:

Plik:

index,header1,header2,header3
1,str_data,12,1.4
3,str_data,22,42.33
4,str_data,2,3.44
2,str_data,43,43.34

7, str_data, 25, 23.32

Kod:

pd.read_csv('data_file.csv')

Wynik:

   index    header1  header2  header3
0      1   str_data       12     1.40
1      3   str_data       22    42.33
2      4   str_data        2     3.44
3      2   str_data       43    43.34
4      7   str_data       25    23.32

Kilka przydatnych argumentów:

  • sep w polu Domyślny separatorem jest przecinek , . Użyj tej opcji, jeśli potrzebujesz innego ogranicznika, na przykład pd.read_csv('data_file.csv', sep=';')

  • index_col Za pomocą index_col = n ( n liczba całkowita) mówisz pandom, aby używały kolumny n do indeksowania DataFrame. W powyższym przykładzie:

    pd.read_csv('data_file.csv',  index_col=0)
    

    Wynik:

              header1  header2  header3
    index
     1       str_data       12     1.40
     3       str_data       22    42.33
     4       str_data        2     3.44
     2       str_data       43    43.34
     7       str_data       25    23.32
    
  • skip_blank_lines Domyślnie puste linie są pomijane. Użyj skip_blank_lines=False aby dołączyć puste linie (zostaną wypełnione wartościami NaN )

    pd.read_csv('data_file.csv',  index_col=0,skip_blank_lines=False)
    

    Wynik:

             header1  header2  header3
    index
     1      str_data       12     1.40
     3      str_data       22    42.33
     4      str_data        2     3.44
     2      str_data       43    43.34
    NaN          NaN      NaN      NaN
     7      str_data       25    23.32
    
  • parse_dates Użyj tej opcji do parsowania danych daty.

    Plik:

    date_begin;date_end;header3;header4;header5
    1/1/2017;1/10/2017;str_data;1001;123,45
    2/1/2017;2/10/2017;str_data;1001;67,89
    3/1/2017;3/10/2017;str_data;1001;0
    

    Kod do parsowania kolumn 0 i 1 jako dat:

    pd.read_csv('f.csv', sep=';', parse_dates=[0,1])
    

    Wynik:

      date_begin   date_end   header3  header4 header5
    0 2017-01-01 2017-01-10  str_data     1001  123,45
    1 2017-02-01 2017-02-10  str_data     1001   67,89
    2 2017-03-01 2017-03-10  str_data     1001       0
    

    Domyślnie wywodzi się format daty. Jeśli chcesz określić format daty, na przykład możesz użyć

    dateparse = lambda x: pd.datetime.strptime(x, '%d/%m/%Y')
    pd.read_csv('f.csv', sep=';',parse_dates=[0,1],date_parser=dateparse)
    

    Wynik:

      date_begin   date_end   header3  header4 header5
    0 2017-01-01 2017-10-01  str_data     1001  123,45
    1 2017-01-02 2017-10-02  str_data     1001   67,89
    2 2017-01-03 2017-10-03  str_data     1001       0   
    

Więcej informacji na temat parametrów funkcji można znaleźć w oficjalnej dokumentacji .

Podstawowe zapisywanie do pliku csv

raw_data = {'first_name': ['John', 'Jane', 'Jim'],
            'last_name': ['Doe', 'Smith', 'Jones'],
            'department': ['Accounting', 'Sales', 'Engineering'],}
df = pd.DataFrame(raw_data,columns=raw_data.keys())
df.to_csv('data_file.csv')

Parsowanie dat podczas czytania z csv

Możesz określić kolumnę zawierającą daty, aby pandy automatycznie analizowały je podczas czytania z pliku CSV

pandas.read_csv('data_file.csv', parse_dates=['date_column'])

Arkusz kalkulacyjny do dyktowania DataFrames

with pd.ExcelFile('path_to_file.xls) as xl:
    d = {sheet_name: xl.parse(sheet_name) for sheet_name in xl.sheet_names}

Przeczytaj konkretny arkusz

pd.read_excel('path_to_file.xls', sheetname='Sheet1')

Istnieje wiele opcji analizy dla read_excel (podobnie do opcji w read_csv .

pd.read_excel('path_to_file.xls',
              sheetname='Sheet1', header=[0, 1, 2],
              skiprows=3, index_col=0)  # etc.

Testowanie read_csv

import pandas as pd
import io

temp=u"""index; header1; header2; header3
1; str_data; 12; 1.4
3; str_data; 22; 42.33
4; str_data; 2; 3.44
2; str_data; 43; 43.34
7; str_data; 25; 23.32"""
#after testing replace io.StringIO(temp) to filename
df = pd.read_csv(io.StringIO(temp),  
                 sep = ';', 
                 index_col = 0,
                 skip_blank_lines = True)
print (df)
         header1   header2   header3
index                               
1       str_data        12      1.40
3       str_data        22     42.33
4       str_data         2      3.44
2       str_data        43     43.34
7       str_data        25     23.32

Zrozumienie listy

Wszystkie pliki są w files folderów. Najpierw utwórz listę DataFrames a następnie concat je:

import pandas as pd
import glob

#a.csv
#a,b
#1,2
#5,8

#b.csv
#a,b
#9,6
#6,4

#c.csv
#a,b
#4,3
#7,0

files = glob.glob('files/*.csv')
dfs = [pd.read_csv(fp) for fp in files]
#duplicated index inherited from each Dataframe
df = pd.concat(dfs)
print (df)
   a  b
0  1  2
1  5  8
0  9  6
1  6  4
0  4  3
1  7  0
#'reseting' index
df = pd.concat(dfs, ignore_index=True)
print (df)
   a  b
0  1  2
1  5  8
2  9  6
3  6  4
4  4  3
5  7  0
#concat by columns
df1 = pd.concat(dfs, axis=1)
print (df1)
   a  b  a  b  a  b
0  1  2  9  6  4  3
1  5  8  6  4  7  0
#reset column names
df1 = pd.concat(dfs, axis=1, ignore_index=True)
print (df1)
   0  1  2  3  4  5
0  1  2  9  6  4  3
1  5  8  6  4  7  0

Czytaj w częściach

import pandas as pd    

chunksize = [n]
for chunk in pd.read_csv(filename, chunksize=chunksize):
    process(chunk)
    delete(chunk)

Zapisz w pliku CSV

Zapisz z domyślnymi parametrami:

df.to_csv(file_name)

Napisz konkretne kolumny:

df.to_csv(file_name, columns =['col'])

Separator różnic to „,” - aby go zmienić:

df.to_csv(file_name,sep="|")

Napisz bez nagłówka:

df.to_csv(file_name, header=False)

Napisz z podanym nagłówkiem:

df.to_csv(file_name, header = ['A','B','C',...]

Aby użyć określonego kodowania (np. „Utf-8”), użyj argumentu kodowania:

df.to_csv (nazwa_pliku, kodowanie = 'utf-8')

Parsowanie kolumn daty za pomocą read_csv

Data zawsze ma inny format, można je analizować za pomocą określonej funkcji parse_dates.

To input.csv :

2016 06 10 20:30:00    foo
2016 07 11 19:45:30    bar
2013 10 12 4:30:00     foo

Można przeanalizować w następujący sposób:

mydateparser = lambda x: pd.datetime.strptime(x, "%Y %m %d %H:%M:%S")
df = pd.read_csv("file.csv", sep='\t', names=['date_column', 'other_column'], parse_dates=['date_column'], date_parser=mydateparser)

Argument parse_dates jest analizowaną kolumną
date_parser to funkcja analizatora składni

Odczytywanie i scalanie wielu plików CSV (o tej samej strukturze) w jeden plik DF

import os
import glob
import pandas as pd

def get_merged_csv(flist, **kwargs):
    return pd.concat([pd.read_csv(f, **kwargs) for f in flist], ignore_index=True)

path = 'C:/Users/csvfiles'
fmask = os.path.join(path, '*mask*.csv')

df = get_merged_csv(glob.glob(fmask), index_col=None, usecols=['col1', 'col3'])

print(df.head())

Jeśli chcesz scalić pliki CSV w poziomie (dodając kolumny), użyj axis=1 podczas wywoływania funkcji pd.concat() :

def merged_csv_horizontally(flist, **kwargs):
    return pd.concat([pd.read_csv(f, **kwargs) for f in flist], axis=1)

Odczytywanie pliku CVS do ramki danych pandy, gdy nie ma wiersza nagłówka

Jeśli plik nie zawiera wiersza nagłówka,

Plik:

1;str_data;12;1.4
3;str_data;22;42.33
4;str_data;2;3.44
2;str_data;43;43.34

7; str_data; 25; 23.32

możesz użyć names słów kluczowych, aby podać nazwy kolumn:

df = pandas.read_csv('data_file.csv', sep=';', index_col=0,
                     skip_blank_lines=True, names=['a', 'b', 'c'])

df
Out: 
           a   b      c
1   str_data  12   1.40
3   str_data  22  42.33
4   str_data   2   3.44
2   str_data  43  43.34
7   str_data  25  23.32

Korzystanie z HDFStore

import string
import numpy as np
import pandas as pd

wygeneruj próbkę DF o różnych typach

df = pd.DataFrame({
     'int32':    np.random.randint(0, 10**6, 10),
     'int64':    np.random.randint(10**7, 10**9, 10).astype(np.int64)*10,
     'float':    np.random.rand(10),
     'string':   np.random.choice([c*10 for c in string.ascii_uppercase], 10),
     })

In [71]: df
Out[71]:
      float   int32       int64      string
0  0.649978  848354  5269162190  DDDDDDDDDD
1  0.346963  490266  6897476700  OOOOOOOOOO
2  0.035069  756373  6711566750  ZZZZZZZZZZ
3  0.066692  957474  9085243570  FFFFFFFFFF
4  0.679182  665894  3750794810  MMMMMMMMMM
5  0.861914  630527  6567684430  TTTTTTTTTT
6  0.697691  825704  8005182860  FFFFFFFFFF
7  0.474501  942131  4099797720  QQQQQQQQQQ
8  0.645817  951055  8065980030  VVVVVVVVVV
9  0.083500  349709  7417288920  EEEEEEEEEE

zrobić większy DF (10 * 100.000 = 1.000.000 wierszy)

df = pd.concat([df] * 10**5, ignore_index=True)

utwórz (lub otwórz istniejący) plik HDFStore

store = pd.HDFStore('d:/temp/example.h5')

zapisz naszą ramkę danych w pliku h5 (HDFStore), indeksując kolumny [int32, int64, string]:

store.append('store_key', df, data_columns=['int32','int64','string'])

pokaż szczegóły HDFStore

In [78]: store.get_storer('store_key').table
Out[78]:
/store_key/table (Table(10,)) ''
  description := {
  "index": Int64Col(shape=(), dflt=0, pos=0),
  "values_block_0": Float64Col(shape=(1,), dflt=0.0, pos=1),
  "int32": Int32Col(shape=(), dflt=0, pos=2),
  "int64": Int64Col(shape=(), dflt=0, pos=3),
  "string": StringCol(itemsize=10, shape=(), dflt=b'', pos=4)}
  byteorder := 'little'
  chunkshape := (1724,)
  autoindex := True
  colindexes := {
    "index": Index(6, medium, shuffle, zlib(1)).is_csi=False,
    "int32": Index(6, medium, shuffle, zlib(1)).is_csi=False,
    "string": Index(6, medium, shuffle, zlib(1)).is_csi=False,
    "int64": Index(6, medium, shuffle, zlib(1)).is_csi=False}

pokaż indeksowane kolumny

In [80]: store.get_storer('store_key').table.colindexes
Out[80]:
{
    "int32": Index(6, medium, shuffle, zlib(1)).is_csi=False,
    "index": Index(6, medium, shuffle, zlib(1)).is_csi=False,
    "string": Index(6, medium, shuffle, zlib(1)).is_csi=False,
    "int64": Index(6, medium, shuffle, zlib(1)).is_csi=False}

zamknij (opróżnij na dysk) nasz plik sklepu

store.close()

Czytaj dziennik dostępu Nginx (wiele quechar)

W przypadku wielu quecharów użyj wyrażenia regularnego zamiast sep:

df = pd.read_csv(log_file,
              sep=r'\s(?=(?:[^"]*"[^"]*")*[^"]*$)(?![^\[]*\])',
              engine='python',
              usecols=[0, 3, 4, 5, 6, 7, 8],
              names=['ip', 'time', 'request', 'status', 'size', 'referer', 'user_agent'],
              na_values='-',
              header=None
                )


Modified text is an extract of the original Stack Overflow Documentation
Licencjonowany na podstawie CC BY-SA 3.0
Nie związany z Stack Overflow