pandas
MultiIndex를 사용하여 다른 축의 단면
수색…
.xs를 사용하여 횡단면 선택
In [1]:
import pandas as pd
import numpy as np
arrays = [['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'],
['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']]
idx_row = pd.MultiIndex.from_arrays(arrays, names=['Row_First', 'Row_Second'])
idx_col = pd.MultiIndex.from_product([['A','B'], ['i', 'ii']], names=['Col_First','Col_Second'])
df = pd.DataFrame(np.random.randn(8,4), index=idx_row, columns=idx_col)
Out[1]:
Col_First A B
Col_Second i ii i ii
Row_First Row_Second
bar one -0.452982 -1.872641 0.248450 -0.319433
two -0.460388 -0.136089 -0.408048 0.998774
baz one 0.358206 -0.319344 -2.052081 -0.424957
two -0.823811 -0.302336 1.158968 0.272881
foo one -0.098048 -0.799666 0.969043 -0.595635
two -0.358485 0.412011 -0.667167 1.010457
qux one 1.176911 1.578676 0.350719 0.093351
two 0.241956 1.082138 -0.516898 -0.196605
.xs
는 level
(레벨 또는 정수의 이름)과 axis
행은 0, 열은 1)을 허용합니다.
.xs
는 pandas.Series
및 pandas.DataFrame
사용할 수 있습니다.
행 선택 :
In [2]: df.xs('two', level='Row_Second', axis=0)
Out[2]:
Col_First A B
Col_Second i ii i ii
Row_First
bar -0.460388 -0.136089 -0.408048 0.998774
baz -0.823811 -0.302336 1.158968 0.272881
foo -0.358485 0.412011 -0.667167 1.010457
qux 0.241956 1.082138 -0.516898 -0.196605
열 선택 :
In [3]: df.xs('ii', level=1, axis=1)
Out[3]:
Col_First A B
Row_First Row_Second
bar one -1.872641 -0.319433
two -0.136089 0.998774
baz one -0.319344 -0.424957
two -0.302336 0.272881
foo one -0.799666 -0.595635
two 0.412011 1.010457
qux one 1.578676 0.093351
two 1.082138 -0.196605
.xs
는 선택을 위해서만 작동하며, 할당은 불가능합니다 (설정하지 않음) : ¨
In [4]: df.xs('ii', level='Col_Second', axis=1) = 0
File "<ipython-input-10-92e0785187ba>", line 1
df.xs('ii', level='Col_Second', axis=1) = 0
^
SyntaxError: can't assign to function call
.loc 및 슬라이서 사용
.xs
메서드와 달리 값을 할당 할 수 있습니다. 슬라이서를 사용한 인덱싱은 버전 0.14.0
부터 사용할 수 있습니다.
In [1]:
import pandas as pd
import numpy as np
arrays = [['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'],
['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']]
idx_row = pd.MultiIndex.from_arrays(arrays, names=['Row_First', 'Row_Second'])
idx_col = pd.MultiIndex.from_product([['A','B'], ['i', 'ii']], names=['Col_First','Col_Second'])
df = pd.DataFrame(np.random.randn(8,4), index=idx_row, columns=idx_col)
Out[1]:
Col_First A B
Col_Second i ii i ii
Row_First Row_Second
bar one -0.452982 -1.872641 0.248450 -0.319433
two -0.460388 -0.136089 -0.408048 0.998774
baz one 0.358206 -0.319344 -2.052081 -0.424957
two -0.823811 -0.302336 1.158968 0.272881
foo one -0.098048 -0.799666 0.969043 -0.595635
two -0.358485 0.412011 -0.667167 1.010457
qux one 1.176911 1.578676 0.350719 0.093351
two 0.241956 1.082138 -0.516898 -0.196605
행 선택 :
In [2]: df.loc[(slice(None),'two'),:]
Out[2]:
Col_First A B
Col_Second i ii i ii
Row_First Row_Second
bar two -0.460388 -0.136089 -0.408048 0.998774
baz two -0.823811 -0.302336 1.158968 0.272881
foo two -0.358485 0.412011 -0.667167 1.010457
qux two 0.241956 1.082138 -0.516898 -0.196605
열 선택 :
In [3]: df.loc[:,(slice(None),'ii')]
Out[3]:
Col_First A B
Col_Second ii ii
Row_First Row_Second
bar one -1.872641 -0.319433
two -0.136089 0.998774
baz one -0.319344 -0.424957
two -0.302336 0.272881
foo one -0.799666 -0.595635
two 0.412011 1.010457
qux one 1.578676 0.093351
two 1.082138 -0.196605
양축 선택 :
In [4]: df.loc[(slice(None),'two'),(slice(None),'ii')]
Out[4]:
Col_First A B
Col_Second ii ii
Row_First Row_Second
bar two -0.136089 0.998774
baz two -0.302336 0.272881
foo two 0.412011 1.010457
qux two 1.082138 -0.196605
할당 작업 ( .xs
와 달리) :
In [5]: df.loc[(slice(None),'two'),(slice(None),'ii')]=0
df
Out[5]:
Col_First A B
Col_Second i ii i ii
Row_First Row_Second
bar one -0.452982 -1.872641 0.248450 -0.319433
two -0.460388 0.000000 -0.408048 0.000000
baz one 0.358206 -0.319344 -2.052081 -0.424957
two -0.823811 0.000000 1.158968 0.000000
foo one -0.098048 -0.799666 0.969043 -0.595635
two -0.358485 0.000000 -0.667167 0.000000
qux one 1.176911 1.578676 0.350719 0.093351
two 0.241956 0.000000 -0.516898 0.000000
Modified text is an extract of the original Stack Overflow Documentation
아래 라이선스 CC BY-SA 3.0
와 제휴하지 않음 Stack Overflow