pandas                
            Rimodellamento e rotazione
        
        
            
    Ricerca…
Semplice rotazione
 Prima prova usa il pivot : 
import pandas as pd
import numpy as np
df = pd.DataFrame({'Name':['Mary', 'Josh','Jon','Lucy', 'Jane', 'Sue'],
                   'Age':[34, 37, 29, 40, 29, 31],
                   'City':['Boston','New York', 'Chicago', 'Los Angeles', 'Chicago', 'Boston'],
                   'Position':['Manager','Programmer','Manager','Manager','Programmer', 'Programmer']},
                    columns=['Name','Position','City','Age'])
print (df)
   Name    Position         City  Age
0  Mary     Manager       Boston   34
1  Josh  Programmer     New York   37
2   Jon     Manager      Chicago   29
3  Lucy     Manager  Los Angeles   40
4  Jane  Programmer      Chicago   29
5   Sue  Programmer       Boston   31
print (df.pivot(index='Position', columns='City', values='Age'))
City        Boston  Chicago  Los Angeles  New York
Position                                          
Manager       34.0     29.0         40.0       NaN
Programmer    31.0     29.0          NaN      37.0
Se è necessario reimpostare l'indice, rimuovere i nomi delle colonne e riempire i valori NaN:
#pivoting by numbers - column Age
print (df.pivot(index='Position', columns='City', values='Age')
         .reset_index()
         .rename_axis(None, axis=1)
         .fillna(0))
         
     Position  Boston  Chicago  Los Angeles  New York
0     Manager    34.0     29.0         40.0       0.0
1  Programmer    31.0     29.0          0.0      37.0
#pivoting by strings - column Name
print (df.pivot(index='Position', columns='City', values='Name'))   
      
City       Boston Chicago Los Angeles New York
Position                                      
Manager      Mary     Jon        Lucy     None
Programmer    Sue    Jane        None     Josh
Facendo perno con l'aggregazione
import pandas as pd
import numpy as np
df = pd.DataFrame({'Name':['Mary', 'Jon','Lucy', 'Jane', 'Sue', 'Mary', 'Lucy'],
                   'Age':[35, 37, 40, 29, 31, 26, 28],
                   'City':['Boston', 'Chicago', 'Los Angeles', 'Chicago', 'Boston', 'Boston', 'Chicago'],
                   'Position':['Manager','Manager','Manager','Programmer', 'Programmer','Manager','Manager'],
                    'Sex':['Female','Male','Female','Female', 'Female','Female','Female']},
                    columns=['Name','Position','City','Age','Sex'])
print (df)
   Name    Position         City  Age  Sex
0  Mary     Manager       Boston   35  Female
1   Jon     Manager      Chicago   37  Male
2  Lucy     Manager  Los Angeles   40  Female
3  Jane  Programmer      Chicago   29  Female
4   Sue  Programmer       Boston   31  Female
5  Mary     Manager       Boston   26  Female
6  Lucy     Manager      Chicago   28  Female
 Se usi pivot , ottieni l'errore: 
print (df.pivot(index='Position', columns='City', values='Age'))
ValueError: l'indice contiene voci duplicate, non può essere rimodellato
 Utilizza pivot_table con funzione di aggregazione: 
#default aggfunc is np.mean
print (df.pivot_table(index='Position', columns='City', values='Age'))
City        Boston  Chicago  Los Angeles
Position                                
Manager       30.5     32.5         40.0
Programmer    31.0     29.0          NaN
print (df.pivot_table(index='Position', columns='City', values='Age', aggfunc=np.mean))
City        Boston  Chicago  Los Angeles
Position                                
Manager       30.5     32.5         40.0
Programmer    31.0     29.0          NaN
Un altro agg funzioni:
print (df.pivot_table(index='Position', columns='City', values='Age', aggfunc=sum))
City        Boston  Chicago  Los Angeles
Position                                
Manager       61.0     65.0         40.0
Programmer    31.0     29.0          NaN
#lost data !!!
print (df.pivot_table(index='Position', columns='City', values='Age', aggfunc='first'))
City        Boston  Chicago  Los Angeles
Position                                
Manager       35.0     37.0         40.0
Programmer    31.0     29.0          NaN
 Se necessario aggregare per colonne con valori string : 
print (df.pivot_table(index='Position', columns='City', values='Name')) 
DataError: nessun tipo numerico da aggregare
Puoi usare queste funzioni aggragating:
print (df.pivot_table(index='Position', columns='City', values='Name', aggfunc='first')) 
City       Boston Chicago Los Angeles
Position                             
Manager      Mary     Jon        Lucy
Programmer    Sue    Jane        None
print (df.pivot_table(index='Position', columns='City', values='Name', aggfunc='last')) 
City       Boston Chicago Los Angeles
Position                             
Manager      Mary    Lucy        Lucy
Programmer    Sue    Jane        None
print (df.pivot_table(index='Position', columns='City', values='Name', aggfunc='sum')) 
City          Boston  Chicago Los Angeles
Position                                 
Manager     MaryMary  JonLucy        Lucy
Programmer       Sue     Jane        None
print (df.pivot_table(index='Position', columns='City', values='Name', aggfunc=', '.join)) 
City            Boston    Chicago Los Angeles
Position                                     
Manager     Mary, Mary  Jon, Lucy        Lucy
Programmer         Sue       Jane        None
print (df.pivot_table(index='Position', columns='City', values='Name', aggfunc=', '.join, fill_value='-')
         .reset_index()
         .rename_axis(None, axis=1))
     Position      Boston    Chicago Los Angeles
0     Manager  Mary, Mary  Jon, Lucy        Lucy
1  Programmer         Sue       Jane           -
Le informazioni riguardanti il sesso non sono ancora state usate. Potrebbe essere cambiato da una delle colonne o potrebbe essere aggiunto come un altro livello:
print (df.pivot_table(index='Position', columns=['City','Sex'], values='Age', aggfunc='first'))
City       Boston Chicago       Los Angeles
Sex        Female  Female  Male      Female
Position
Manager      35.0    28.0  37.0        40.0
Programmer   31.0    29.0   NaN         NaN
È possibile specificare più colonne in qualsiasi indice, colonna e valore degli attributi.
print (df.pivot_table(index=['Position','Sex'], columns='City', values='Age', aggfunc='first'))
City               Boston  Chicago  Los Angeles
Position   Sex
Manager    Female    35.0     28.0         40.0
           Male       NaN     37.0          NaN
Programmer Female    31.0     29.0          NaN
Applicare diverse funzioni di aggregazione
Puoi facilmente applicare più funzioni durante un singolo pivot:
In [23]: import numpy as np
In [24]: df.pivot_table(index='Position', values='Age', aggfunc=[np.mean, np.std])
Out[24]: 
                 mean       std
Position                       
Manager     34.333333  5.507571
Programmer  32.333333  4.163332
A volte, potresti voler applicare funzioni specifiche a colonne specifiche:
In [35]: df['Random'] = np.random.random(6)
In [36]: df
Out[36]: 
   Name    Position         City  Age    Random
0  Mary     Manager       Boston   34  0.678577
1  Josh  Programmer     New York   37  0.973168
2   Jon     Manager      Chicago   29  0.146668
3  Lucy     Manager  Los Angeles   40  0.150120
4  Jane  Programmer      Chicago   29  0.112769
5   Sue  Programmer       Boston   31  0.185198
For example, find the mean age, and standard deviation of random by Position:
In [37]: df.pivot_table(index='Position', aggfunc={'Age': np.mean, 'Random': np.std})
Out[37]: 
                  Age    Random
Position                       
Manager     34.333333  0.306106
Programmer  32.333333  0.477219
Si può passare un elenco di funzioni da applicare anche alle singole colonne:
In [38]: df.pivot_table(index='Position', aggfunc={'Age': np.mean, 'Random': [np.mean, np.std]})]
Out[38]: 
                  Age    Random          
                 mean      mean       std
Position                                 
Manager     34.333333  0.325122  0.306106
Programmer  32.333333  0.423712  0.477219
Impilabile e disimpilabile
import pandas as pd
import numpy as np
np.random.seed(0)
tuples = list(zip(*[['bar', 'bar', 'foo', 'foo', 'qux', 'qux'],
                    ['one', 'two', 'one', 'two','one', 'two']]))
idx = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])
df = pd.DataFrame(np.random.randn(6, 2), index=idx, columns=['A', 'B'])
print (df)
                     A         B
first second                    
bar   one     1.764052  0.400157
      two     0.978738  2.240893
foo   one     1.867558 -0.977278
      two     0.950088 -0.151357
qux   one    -0.103219  0.410599
      two     0.144044  1.454274
print (df.stack())
first  second   
bar    one     A    1.764052
               B    0.400157
       two     A    0.978738
               B    2.240893
foo    one     A    1.867558
               B   -0.977278
       two     A    0.950088
               B   -0.151357
qux    one     A   -0.103219
               B    0.410599
       two     A    0.144044
               B    1.454274
dtype: float64
#reset index, rename column name
print (df.stack().reset_index(name='val2').rename(columns={'level_2': 'val1'}))
   first second val1      val2
0    bar    one    A  1.764052
1    bar    one    B  0.400157
2    bar    two    A  0.978738
3    bar    two    B  2.240893
4    foo    one    A  1.867558
5    foo    one    B -0.977278
6    foo    two    A  0.950088
7    foo    two    B -0.151357
8    qux    one    A -0.103219
9    qux    one    B  0.410599
10   qux    two    A  0.144044
11   qux    two    B  1.454274
print (df.unstack())
               A                   B          
second       one       two       one       two
first                                         
bar     1.764052  0.978738  0.400157  2.240893
foo     1.867558  0.950088 -0.977278 -0.151357
qux    -0.103219  0.144044  0.410599  1.454274
 rename_axis (nuovo in pandas 0.18.0 ): 
#reset index, remove columns names 
df1 = df.unstack().reset_index().rename_axis((None,None), axis=1)
#reset MultiIndex in columns with list comprehension
df1.columns = ['_'.join(col).strip('_') for col in df1.columns]
print (df1)
  first     A_one     A_two     B_one     B_two
0   bar  1.764052  0.978738  0.400157  2.240893
1   foo  1.867558  0.950088 -0.977278 -0.151357
2   qux -0.103219  0.144044  0.410599  1.454274
panda muggito 0.18.0
#reset index
df1 = df.unstack().reset_index()
#remove columns names
df1.columns.names = (None, None)
#reset MultiIndex in columns with list comprehension
df1.columns = ['_'.join(col).strip('_') for col in df1.columns]
print (df1)
  first     A_one     A_two     B_one     B_two
0   bar  1.764052  0.978738  0.400157  2.240893
1   foo  1.867558  0.950088 -0.977278 -0.151357
2   qux -0.103219  0.144044  0.410599  1.454274
Tabulazione incrociata
import pandas as pd
df = pd.DataFrame({'Sex': ['M', 'M', 'F', 'M', 'F', 'F', 'M', 'M', 'F', 'F'], 
               'Age': [20, 19, 17, 35, 22, 22, 12, 15, 17, 22],
               'Heart Disease': ['Y', 'N', 'Y', 'N', 'N', 'Y', 'N', 'Y', 'N', 'Y']})
df
  Age Heart Disease Sex
0   20             Y   M
1   19             N   M
2   17             Y   F
3   35             N   M
4   22             N   F
5   22             Y   F
6   12             N   M
7   15             Y   M
8   17             N   F
9   22             Y   F
pd.crosstab(df['Sex'], df['Heart Disease'])
Hearth Disease  N  Y
Sex                 
F               2  3
M               3  2
Usando la notazione a punti:
pd.crosstab(df.Sex, df.Age)
Age  12  15  17  19  20  22  35
Sex                            
F     0   0   2   0   0   3   0
M     1   1   0   1   1   0   1
Ottenere la trasposizione di DF:
pd.crosstab(df.Sex, df.Age).T
Sex  F  M
Age      
12   0  1
15   0  1
17   2  0
19   0  1
20   0  1
22   3  0
35   0  1
Ottenere margini o cumulativi:
pd.crosstab(df['Sex'], df['Heart Disease'], margins=True)
Heart Disease  N  Y  All
Sex                     
F              2  3    5
M              3  2    5
All            5  5   10
Ottenere trasposizione cumulativa:
pd.crosstab(df['Sex'], df['Age'], margins=True).T
Sex  F  M  All
Age           
12   0  1    1
15   0  1    1
17   2  0    2
19   0  1    1
20   0  1    1
22   3  0    3
35   0  1    1
All  5  5   10
Ottenere percentuali:
pd.crosstab(df["Sex"],df['Heart Disease']).apply(lambda r: r/len(df), axis=1)
Heart Disease    N    Y
Sex                    
F              0.2  0.3
M              0.3  0.2
Ottenendo cumulativo e moltiplicando per 100:
df2 = pd.crosstab(df["Age"],df['Sex'], margins=True ).apply(lambda r: r/len(df)*100, axis=1)
df2
Sex     F     M    All
Age                   
12    0.0  10.0   10.0
15    0.0  10.0   10.0
17   20.0   0.0   20.0
19    0.0  10.0   10.0
20    0.0  10.0   10.0
22   30.0   0.0   30.0
35    0.0  10.0   10.0
All  50.0  50.0  100.0
Rimozione di una colonna da DF (solo andata):
df2[["F","M"]]
Sex     F     M
Age            
12    0.0  10.0
15    0.0  10.0
17   20.0   0.0
19    0.0  10.0
20    0.0  10.0
22   30.0   0.0
35    0.0  10.0
All  50.0  50.0
I panda si sciolgono per andare da larghi a lunghi
>>> df
   ID  Year  Jan_salary  Feb_salary  Mar_salary
0   1  2016        4500        4200        4700
1   2  2016        3800        3600        4400
2   3  2016        5500        5200        5300
>>> melted_df = pd.melt(df,id_vars=['ID','Year'],
                        value_vars=['Jan_salary','Feb_salary','Mar_salary'],
                        var_name='month',value_name='salary')
>>> melted_df
   ID  Year       month  salary
0   1  2016  Jan_salary    4500
1   2  2016  Jan_salary    3800
2   3  2016  Jan_salary    5500
3   1  2016  Feb_salary    4200
4   2  2016  Feb_salary    3600
5   3  2016  Feb_salary    5200
6   1  2016  Mar_salary    4700
7   2  2016  Mar_salary    4400
8   3  2016  Mar_salary    5300
>>> melted_['month'] = melted_['month'].str.replace('_salary','')
>>> import calendar
>>> def mapper(month_abbr):
...     # from http://stackoverflow.com/a/3418092/42346
...     d = {v: str(k).zfill(2) for k,v in enumerate(calendar.month_abbr)}
...     return d[month_abbr]
>>> melted_df['month'] = melted_df['month'].apply(mapper)
>>> melted_df
   ID  Year month  salary
0   1  2016    01    4500
1   2  2016    01    3800
2   3  2016    01    5500
3   1  2016    02    4200
4   2  2016    02    3600
5   3  2016    02    5200
6   1  2016    03    4700
7   2  2016    03    4400
8   3  2016    03    5300
Dividi (risagoma) le stringhe CSV in colonne in più righe, con un elemento per riga
import pandas as pd
df = pd.DataFrame([{'var1': 'a,b,c', 'var2': 1, 'var3': 'XX'},
                   {'var1': 'd,e,f,x,y', 'var2': 2, 'var3': 'ZZ'}])
print(df)
reshaped = \
(df.set_index(df.columns.drop('var1',1).tolist())
   .var1.str.split(',', expand=True)
   .stack()
   .reset_index()
   .rename(columns={0:'var1'})
   .loc[:, df.columns]
)
print(reshaped)
Produzione:
        var1  var2 var3
0      a,b,c     1   XX
1  d,e,f,x,y     2   ZZ
  var1  var2 var3
0    a     1   XX
1    b     1   XX
2    c     1   XX
3    d     2   ZZ
4    e     2   ZZ
5    f     2   ZZ
6    x     2   ZZ
7    y     2   ZZ