Julia Language
Comparaciones
Buscar..
Sintaxis
- x <y # si
x
es estrictamente menor quey
- x> y # si
x
es estrictamente mayor quey
- x == y # si
x
es igual ay
- x === y # alternativamente
x ≡ y
, six
es igual ay
- x ≤ y # alternativamente
x <= y
, six
es menor o igual quey
- x ≥ y # alternativamente
x >= y
, six
es mayor o igual quey
- x ≠ y # alternativamente
x != y
, six
no es igual ay
- x ≈ y # si
x
es aproximadamente igual ay
Observaciones
Tenga cuidado al voltear los signos de comparación. Julia define muchas funciones de comparación por defecto sin definir la versión invertida correspondiente. Por ejemplo, uno puede correr
julia> Set(1:3) ⊆ Set(0:5)
true
pero no funciona hacer
julia> Set(0:5) ⊇ Set(1:3)
ERROR: UndefVarError: ⊇ not defined
Comparaciones encadenadas
Los operadores de comparación múltiple utilizados juntos están encadenados, como si estuvieran conectados a través del operador &&
. Esto puede ser útil para cadenas de comparación legibles y matemáticamente concisas, como
# same as 0 < i && i <= length(A)
isinbounds(A, i) = 0 < i ≤ length(A)
# same as Set() != x && issubset(x, y)
isnonemptysubset(x, y) = Set() ≠ x ⊆ y
Sin embargo, hay una diferencia importante entre a > b > c
y a > b && b > c
; en este último, el término b
se evalúa dos veces. Esto no importa mucho para los símbolos antiguos, pero podría importar si los términos en sí tienen efectos secundarios. Por ejemplo,
julia> f(x) = (println(x); 2)
f (generic function with 1 method)
julia> 3 > f("test") > 1
test
true
julia> 3 > f("test") && f("test") > 1
test
test
true
Echemos un vistazo más profundo a las comparaciones encadenadas, y cómo funcionan, al ver cómo se analizan y se reducen en expresiones . Primero, considere la comparación simple, lo que podemos ver es solo una simple llamada de función:
julia> dump(:(a > b))
Expr
head: Symbol call
args: Array{Any}((3,))
1: Symbol >
2: Symbol a
3: Symbol b
typ: Any
Ahora, si encadenamos la comparación, notamos que el análisis ha cambiado:
julia> dump(:(a > b >= c))
Expr
head: Symbol comparison
args: Array{Any}((5,))
1: Symbol a
2: Symbol >
3: Symbol b
4: Symbol >=
5: Symbol c
typ: Any
Después de analizar, la expresión se reduce a su forma final:
julia> expand(:(a > b >= c))
:(begin
unless a > b goto 3
return b >= c
3:
return false
end)
y notamos que esto es lo mismo que para a > b && b >= c
:
julia> expand(:(a > b && b >= c))
:(begin
unless a > b goto 3
return b >= c
3:
return false
end)
Números ordinales
Veremos cómo implementar comparaciones personalizadas implementando un tipo personalizado, números ordinales . Para simplificar la implementación, nos centraremos en un pequeño subconjunto de estos números: todos los números ordinales hasta e incluyendo ε₀. Nuestra implementación está enfocada en la simplicidad, no en la velocidad; Sin embargo, la implementación tampoco es lenta.
Almacenamos números ordinales por su forma normal de Cantor . Debido a que la aritmética ordinal no es conmutativa, tomaremos primero la convención común de almacenar los términos más significativos.
immutable OrdinalNumber <: Number
βs::Vector{OrdinalNumber}
cs::Vector{Int}
end
Como la forma normal de Cantor es única, podemos probar la igualdad simplemente a través de la igualdad recursiva:
En la versión v0.5, hay una sintaxis muy agradable para hacer esto de manera compacta:
import Base: ==
α::OrdinalNumber == β::OrdinalNumber = α.βs == β.βs && α.cs == β.cs
De lo contrario, define la función como es más típica:
import Base: ==
==(α::OrdinalNumber, β::OrdinalNumber) = α.βs == β.βs && α.cs == β.cs
Para finalizar nuestro pedido, debido a que este tipo tiene un pedido total, deberíamos sobrecargar la función isless
:
import Base: isless
function isless(α::OrdinalNumber, β::OrdinalNumber)
for i in 1:min(length(α.cs), length(β.cs))
if α.βs[i] < β.βs[i]
return true
elseif α.βs[i] == β.βs[i] && α.cs[i] < β.cs[i]
return true
end
end
return length(α.cs) < length(β.cs)
end
Para probar nuestro pedido, podemos crear algunos métodos para hacer números ordinales. Cero, por supuesto, se obtiene al no tener términos en la forma normal de Cantor:
const ORDINAL_ZERO = OrdinalNumber([], [])
Base.zero(::Type{OrdinalNumber}) = ORDINAL_ZERO
Podemos definir una expω
para calcular ω^α
, y usarla para calcular 1 y ω:
expω(α) = OrdinalNumber([α], [1])
const ORDINAL_ONE = expω(ORDINAL_ZERO)
Base.one(::Type{OrdinalNumber}) = ORDINAL_ONE
const ω = expω(ORDINAL_ONE)
Ahora tenemos una función de orden completamente funcional en los números ordinales:
julia> ORDINAL_ZERO < ORDINAL_ONE < ω < expω(ω)
true
julia> ORDINAL_ONE > ORDINAL_ZERO
true
julia> sort([ORDINAL_ONE, ω, expω(ω), ORDINAL_ZERO])
4-element Array{OrdinalNumber,1}:
OrdinalNumber(OrdinalNumber[],Int64[])
OrdinalNumber(OrdinalNumber[OrdinalNumber(OrdinalNumber[],Int64[])],[1])
OrdinalNumber(OrdinalNumber[OrdinalNumber(OrdinalNumber[OrdinalNumber(OrdinalNumber[],Int64[])],[1])],[1])
OrdinalNumber(OrdinalNumber[OrdinalNumber(OrdinalNumber[OrdinalNumber(OrdinalNumber[OrdinalNumber(OrdinalNumber[],Int64[])],[1])],[1])],[1])
En el último ejemplo, vemos que la impresión de números ordinales podría ser mejor, pero el resultado es el esperado.
Operadores Estándar
Julia soporta un conjunto muy grande de operadores de comparación. Éstos incluyen
- Todas las siguientes secuencias de Unicode:
> < >= ≥ <= ≤ == === ≡ != ≠ !== ≢ ∈ ∉ ∋ ∌ ⊆ ⊈ ⊂ ⊄ ⊊ ∝ ∊ ∍ ∥ ∦ ∷ ∺ ∻ ∽ ∾ ≁ ≃ ≄ ≅ ≆ ≇ ≈ ≉ ≊ ≋ ≌ ≍ ≎ ≐ ≑ ≒ ≓ ≔ ≕ ≖ ≗ ≘ ≙ ≚ ≛ ≜ ≝ ≞ ≟ ≣ ≦ ≧ ≨ ≩ ≪ ≫ ≬ ≭ ≮ ≯ ≰ ≱ ≲ ≳ ≴ ≵ ≶ ≷ ≸ ≹ ≺ ≻ ≼ ≽ ≾ ≿ ⊀ ⊁ ⊃ ⊅ ⊇ ⊉ ⊋ ⊏ ⊐ ⊑ ⊒ ⊜ ⊩ ⊬ ⊮ ⊰ ⊱ ⊲ ⊳ ⊴ ⊵ ⊶ ⊷ ⋍ ⋐ ⋑ ⋕ ⋖ ⋗ ⋘ ⋙ ⋚ ⋛ ⋜ ⋝ ⋞ ⋟ ⋠ ⋡ ⋢ ⋣ ⋤ ⋥ ⋦ ⋧ ⋨ ⋩ ⋪ ⋫ ⋬ ⋭ ⋲ ⋳ ⋴ ⋵ ⋶ ⋷ ⋸ ⋹ ⋺ ⋻ ⋼ ⋽ ⋾ ⋿ ⟈ ⟉ ⟒ ⦷ ⧀ ⧁ ⧡ ⧣ ⧤ ⧥ ⩦ ⩧ ⩪ ⩫ ⩬ ⩭ ⩮ ⩯ ⩰ ⩱ ⩲ ⩳ ⩴ ⩵ ⩶ ⩷ ⩸ ⩹ ⩺ ⩻ ⩼ ⩽ ⩾ ⩿ ⪀ ⪁ ⪂ ⪃ ⪄ ⪅ ⪆ ⪇ ⪈ ⪉ ⪊ ⪋ ⪌ ⪍ ⪎ ⪏ ⪐ ⪑ ⪒ ⪓ ⪔ ⪕ ⪖ ⪗ ⪘ ⪙ ⪚ ⪛ ⪜ ⪝ ⪞ ⪟ ⪠ ⪡ ⪢ ⪣ ⪤ ⪥ ⪦ ⪧ ⪨ ⪩ ⪪ ⪫ ⪬ ⪭ ⪮ ⪯ ⪰ ⪱ ⪲ ⪳ ⪴ ⪵ ⪶ ⪷ ⪸ ⪹ ⪺ ⪻ ⪼ ⪽ ⪾ ⪿ ⫀ ⫁ ⫂ ⫃ ⫄ ⫅ ⫆ ⫇ ⫈ ⫉ ⫊ ⫋ ⫌ ⫍ ⫎ ⫏ ⫐ ⫑ ⫒ ⫓ ⫔ ⫕ ⫖ ⫗ ⫘ ⫙ ⫷ ⫸ ⫹ ⫺ ⊢ ⊣
≍ ≎ ≐ ≑ ≒ ≓ ≔ ≕ ≖ ≗ ≘ ≙ ≚ ≛ ≜ ≝ ≞ ≟ ≣ ≦ ≧ ≨ ≩> < >= ≥ <= ≤ == === ≡ != ≠ !== ≢ ∈ ∉ ∋ ∌ ⊆ ⊈ ⊂ ⊄ ⊊ ∝ ∊ ∍ ∥ ∦ ∷ ∺ ∻ ∽ ∾ ≁ ≃ ≄ ≅ ≆ ≇ ≈ ≉ ≊ ≋ ≌ ≍ ≎ ≐ ≑ ≒ ≓ ≔ ≕ ≖ ≗ ≘ ≙ ≚ ≛ ≜ ≝ ≞ ≟ ≣ ≦ ≧ ≨ ≩ ≪ ≫ ≬ ≭ ≮ ≯ ≰ ≱ ≲ ≳ ≴ ≵ ≶ ≷ ≸ ≹ ≺ ≻ ≼ ≽ ≾ ≿ ⊀ ⊁ ⊃ ⊅ ⊇ ⊉ ⊋ ⊏ ⊐ ⊑ ⊒ ⊜ ⊩ ⊬ ⊮ ⊰ ⊱ ⊲ ⊳ ⊴ ⊵ ⊶ ⊷ ⋍ ⋐ ⋑ ⋕ ⋖ ⋗ ⋘ ⋙ ⋚ ⋛ ⋜ ⋝ ⋞ ⋟ ⋠ ⋡ ⋢ ⋣ ⋤ ⋥ ⋦ ⋧ ⋨ ⋩ ⋪ ⋫ ⋬ ⋭ ⋲ ⋳ ⋴ ⋵ ⋶ ⋷ ⋸ ⋹ ⋺ ⋻ ⋼ ⋽ ⋾ ⋿ ⟈ ⟉ ⟒ ⦷ ⧀ ⧁ ⧡ ⧣ ⧤ ⧥ ⩦ ⩧ ⩪ ⩫ ⩬ ⩭ ⩮ ⩯ ⩰ ⩱ ⩲ ⩳ ⩴ ⩵ ⩶ ⩷ ⩸ ⩹ ⩺ ⩻ ⩼ ⩽ ⩾ ⩿ ⪀ ⪁ ⪂ ⪃ ⪄ ⪅ ⪆ ⪇ ⪈ ⪉ ⪊ ⪋ ⪌ ⪍ ⪎ ⪏ ⪐ ⪑ ⪒ ⪓ ⪔ ⪕ ⪖ ⪗ ⪘ ⪙ ⪚ ⪛ ⪜ ⪝ ⪞ ⪟ ⪠ ⪡ ⪢ ⪣ ⪤ ⪥ ⪦ ⪧ ⪨ ⪩ ⪪ ⪫ ⪬ ⪭ ⪮ ⪯ ⪰ ⪱ ⪲ ⪳ ⪴ ⪵ ⪶ ⪷ ⪸ ⪹ ⪺ ⪻ ⪼ ⪽ ⪾ ⪿ ⫀ ⫁ ⫂ ⫃ ⫄ ⫅ ⫆ ⫇ ⫈ ⫉ ⫊ ⫋ ⫌ ⫍ ⫎ ⫏ ⫐ ⫑ ⫒ ⫓ ⫔ ⫕ ⫖ ⫗ ⫘ ⫙ ⫷ ⫸ ⫹ ⫺ ⊢ ⊣
≴ ≵ ≶ ≷ ≸ ≹ ≺ ≻ ≼> < >= ≥ <= ≤ == === ≡ != ≠ !== ≢ ∈ ∉ ∋ ∌ ⊆ ⊈ ⊂ ⊄ ⊊ ∝ ∊ ∍ ∥ ∦ ∷ ∺ ∻ ∽ ∾ ≁ ≃ ≄ ≅ ≆ ≇ ≈ ≉ ≊ ≋ ≌ ≍ ≎ ≐ ≑ ≒ ≓ ≔ ≕ ≖ ≗ ≘ ≙ ≚ ≛ ≜ ≝ ≞ ≟ ≣ ≦ ≧ ≨ ≩ ≪ ≫ ≬ ≭ ≮ ≯ ≰ ≱ ≲ ≳ ≴ ≵ ≶ ≷ ≸ ≹ ≺ ≻ ≼ ≽ ≾ ≿ ⊀ ⊁ ⊃ ⊅ ⊇ ⊉ ⊋ ⊏ ⊐ ⊑ ⊒ ⊜ ⊩ ⊬ ⊮ ⊰ ⊱ ⊲ ⊳ ⊴ ⊵ ⊶ ⊷ ⋍ ⋐ ⋑ ⋕ ⋖ ⋗ ⋘ ⋙ ⋚ ⋛ ⋜ ⋝ ⋞ ⋟ ⋠ ⋡ ⋢ ⋣ ⋤ ⋥ ⋦ ⋧ ⋨ ⋩ ⋪ ⋫ ⋬ ⋭ ⋲ ⋳ ⋴ ⋵ ⋶ ⋷ ⋸ ⋹ ⋺ ⋻ ⋼ ⋽ ⋾ ⋿ ⟈ ⟉ ⟒ ⦷ ⧀ ⧁ ⧡ ⧣ ⧤ ⧥ ⩦ ⩧ ⩪ ⩫ ⩬ ⩭ ⩮ ⩯ ⩰ ⩱ ⩲ ⩳ ⩴ ⩵ ⩶ ⩷ ⩸ ⩹ ⩺ ⩻ ⩼ ⩽ ⩾ ⩿ ⪀ ⪁ ⪂ ⪃ ⪄ ⪅ ⪆ ⪇ ⪈ ⪉ ⪊ ⪋ ⪌ ⪍ ⪎ ⪏ ⪐ ⪑ ⪒ ⪓ ⪔ ⪕ ⪖ ⪗ ⪘ ⪙ ⪚ ⪛ ⪜ ⪝ ⪞ ⪟ ⪠ ⪡ ⪢ ⪣ ⪤ ⪥ ⪦ ⪧ ⪨ ⪩ ⪪ ⪫ ⪬ ⪭ ⪮ ⪯ ⪰ ⪱ ⪲ ⪳ ⪴ ⪵ ⪶ ⪷ ⪸ ⪹ ⪺ ⪻ ⪼ ⪽ ⪾ ⪿ ⫀ ⫁ ⫂ ⫃ ⫄ ⫅ ⫆ ⫇ ⫈ ⫉ ⫊ ⫋ ⫌ ⫍ ⫎ ⫏ ⫐ ⫑ ⫒ ⫓ ⫔ ⫕ ⫖ ⫗ ⫘ ⫙ ⫷ ⫸ ⫹ ⫺ ⊢ ⊣
⊉ ⊋ ⊏ ⊐ ⊑ ⊒ ⊜ ⊩ ⊬ ⊮ ⊰ ⊱ ⊲ ⊳ ⊴ ⊵ ⊶ ⊷ ⋍ ⋐ ⋑ ⋕ ⋖ ⋗ ⋘ ⋙ ⋚ ⋛ ⋜ ⋝ ⋞ ⋟ ⋠ ⋡ ⋢ ⋣ ⋤ ⋥ ⋦ ⋧ ⋨ ⋩> < >= ≥ <= ≤ == === ≡ != ≠ !== ≢ ∈ ∉ ∋ ∌ ⊆ ⊈ ⊂ ⊄ ⊊ ∝ ∊ ∍ ∥ ∦ ∷ ∺ ∻ ∽ ∾ ≁ ≃ ≄ ≅ ≆ ≇ ≈ ≉ ≊ ≋ ≌ ≍ ≎ ≐ ≑ ≒ ≓ ≔ ≕ ≖ ≗ ≘ ≙ ≚ ≛ ≜ ≝ ≞ ≟ ≣ ≦ ≧ ≨ ≩ ≪ ≫ ≬ ≭ ≮ ≯ ≰ ≱ ≲ ≳ ≴ ≵ ≶ ≷ ≸ ≹ ≺ ≻ ≼ ≽ ≾ ≿ ⊀ ⊁ ⊃ ⊅ ⊇ ⊉ ⊋ ⊏ ⊐ ⊑ ⊒ ⊜ ⊩ ⊬ ⊮ ⊰ ⊱ ⊲ ⊳ ⊴ ⊵ ⊶ ⊷ ⋍ ⋐ ⋑ ⋕ ⋖ ⋗ ⋘ ⋙ ⋚ ⋛ ⋜ ⋝ ⋞ ⋟ ⋠ ⋡ ⋢ ⋣ ⋤ ⋥ ⋦ ⋧ ⋨ ⋩ ⋪ ⋫ ⋬ ⋭ ⋲ ⋳ ⋴ ⋵ ⋶ ⋷ ⋸ ⋹ ⋺ ⋻ ⋼ ⋽ ⋾ ⋿ ⟈ ⟉ ⟒ ⦷ ⧀ ⧁ ⧡ ⧣ ⧤ ⧥ ⩦ ⩧ ⩪ ⩫ ⩬ ⩭ ⩮ ⩯ ⩰ ⩱ ⩲ ⩳ ⩴ ⩵ ⩶ ⩷ ⩸ ⩹ ⩺ ⩻ ⩼ ⩽ ⩾ ⩿ ⪀ ⪁ ⪂ ⪃ ⪄ ⪅ ⪆ ⪇ ⪈ ⪉ ⪊ ⪋ ⪌ ⪍ ⪎ ⪏ ⪐ ⪑ ⪒ ⪓ ⪔ ⪕ ⪖ ⪗ ⪘ ⪙ ⪚ ⪛ ⪜ ⪝ ⪞ ⪟ ⪠ ⪡ ⪢ ⪣ ⪤ ⪥ ⪦ ⪧ ⪨ ⪩ ⪪ ⪫ ⪬ ⪭ ⪮ ⪯ ⪰ ⪱ ⪲ ⪳ ⪴ ⪵ ⪶ ⪷ ⪸ ⪹ ⪺ ⪻ ⪼ ⪽ ⪾ ⪿ ⫀ ⫁ ⫂ ⫃ ⫄ ⫅ ⫆ ⫇ ⫈ ⫉ ⫊ ⫋ ⫌ ⫍ ⫎ ⫏ ⫐ ⫑ ⫒ ⫓ ⫔ ⫕ ⫖ ⫗ ⫘ ⫙ ⫷ ⫸ ⫹ ⫺ ⊢ ⊣
⋶ ⋷ ⋸ ⋹ ⋺ ⋻ ⋼ ⋽ ⋾ ⋿ ⟈ ⟉ ⟒ ⦷ ⧀ ⧁ ⧡ ⧣ ⧤ ⧥ ⩦ ⩧ ⩪ ⩫ ⩬ ⩭ ⩮ ⩯ ⩰ ⩱ ⩲ ⩳ ⩴ ⩵ ⩶ ⩷ ⩸ ⩹ ⩺ ⩻ ⩼ ⩽> < >= ≥ <= ≤ == === ≡ != ≠ !== ≢ ∈ ∉ ∋ ∌ ⊆ ⊈ ⊂ ⊄ ⊊ ∝ ∊ ∍ ∥ ∦ ∷ ∺ ∻ ∽ ∾ ≁ ≃ ≄ ≅ ≆ ≇ ≈ ≉ ≊ ≋ ≌ ≍ ≎ ≐ ≑ ≒ ≓ ≔ ≕ ≖ ≗ ≘ ≙ ≚ ≛ ≜ ≝ ≞ ≟ ≣ ≦ ≧ ≨ ≩ ≪ ≫ ≬ ≭ ≮ ≯ ≰ ≱ ≲ ≳ ≴ ≵ ≶ ≷ ≸ ≹ ≺ ≻ ≼ ≽ ≾ ≿ ⊀ ⊁ ⊃ ⊅ ⊇ ⊉ ⊋ ⊏ ⊐ ⊑ ⊒ ⊜ ⊩ ⊬ ⊮ ⊰ ⊱ ⊲ ⊳ ⊴ ⊵ ⊶ ⊷ ⋍ ⋐ ⋑ ⋕ ⋖ ⋗ ⋘ ⋙ ⋚ ⋛ ⋜ ⋝ ⋞ ⋟ ⋠ ⋡ ⋢ ⋣ ⋤ ⋥ ⋦ ⋧ ⋨ ⋩ ⋪ ⋫ ⋬ ⋭ ⋲ ⋳ ⋴ ⋵ ⋶ ⋷ ⋸ ⋹ ⋺ ⋻ ⋼ ⋽ ⋾ ⋿ ⟈ ⟉ ⟒ ⦷ ⧀ ⧁ ⧡ ⧣ ⧤ ⧥ ⩦ ⩧ ⩪ ⩫ ⩬ ⩭ ⩮ ⩯ ⩰ ⩱ ⩲ ⩳ ⩴ ⩵ ⩶ ⩷ ⩸ ⩹ ⩺ ⩻ ⩼ ⩽ ⩾ ⩿ ⪀ ⪁ ⪂ ⪃ ⪄ ⪅ ⪆ ⪇ ⪈ ⪉ ⪊ ⪋ ⪌ ⪍ ⪎ ⪏ ⪐ ⪑ ⪒ ⪓ ⪔ ⪕ ⪖ ⪗ ⪘ ⪙ ⪚ ⪛ ⪜ ⪝ ⪞ ⪟ ⪠ ⪡ ⪢ ⪣ ⪤ ⪥ ⪦ ⪧ ⪨ ⪩ ⪪ ⪫ ⪬ ⪭ ⪮ ⪯ ⪰ ⪱ ⪲ ⪳ ⪴ ⪵ ⪶ ⪷ ⪸ ⪹ ⪺ ⪻ ⪼ ⪽ ⪾ ⪿ ⫀ ⫁ ⫂ ⫃ ⫄ ⫅ ⫆ ⫇ ⫈ ⫉ ⫊ ⫋ ⫌ ⫍ ⫎ ⫏ ⫐ ⫑ ⫒ ⫓ ⫔ ⫕ ⫖ ⫗ ⫘ ⫙ ⫷ ⫸ ⫹ ⫺ ⊢ ⊣
⪆ ⪇ ⪈ ⪉ ⪊ ⪋ ⪌ ⪍ ⪎ ⪏ ⪐ ⪑ ⪒ ⪓ ⪔ ⪕ ⪖ ⪗ ⪘ ⪙ ⪚ ⪛ ⪜ ⪝ ⪞ ⪟ ⪠ ⪡ ⪢ ⪣ ⪤ ⪥ ⪦ ⪧ ⪨ ⪩ ⪪ ⪫ ⪬ ⪭ ⪮ ⪯> < >= ≥ <= ≤ == === ≡ != ≠ !== ≢ ∈ ∉ ∋ ∌ ⊆ ⊈ ⊂ ⊄ ⊊ ∝ ∊ ∍ ∥ ∦ ∷ ∺ ∻ ∽ ∾ ≁ ≃ ≄ ≅ ≆ ≇ ≈ ≉ ≊ ≋ ≌ ≍ ≎ ≐ ≑ ≒ ≓ ≔ ≕ ≖ ≗ ≘ ≙ ≚ ≛ ≜ ≝ ≞ ≟ ≣ ≦ ≧ ≨ ≩ ≪ ≫ ≬ ≭ ≮ ≯ ≰ ≱ ≲ ≳ ≴ ≵ ≶ ≷ ≸ ≹ ≺ ≻ ≼ ≽ ≾ ≿ ⊀ ⊁ ⊃ ⊅ ⊇ ⊉ ⊋ ⊏ ⊐ ⊑ ⊒ ⊜ ⊩ ⊬ ⊮ ⊰ ⊱ ⊲ ⊳ ⊴ ⊵ ⊶ ⊷ ⋍ ⋐ ⋑ ⋕ ⋖ ⋗ ⋘ ⋙ ⋚ ⋛ ⋜ ⋝ ⋞ ⋟ ⋠ ⋡ ⋢ ⋣ ⋤ ⋥ ⋦ ⋧ ⋨ ⋩ ⋪ ⋫ ⋬ ⋭ ⋲ ⋳ ⋴ ⋵ ⋶ ⋷ ⋸ ⋹ ⋺ ⋻ ⋼ ⋽ ⋾ ⋿ ⟈ ⟉ ⟒ ⦷ ⧀ ⧁ ⧡ ⧣ ⧤ ⧥ ⩦ ⩧ ⩪ ⩫ ⩬ ⩭ ⩮ ⩯ ⩰ ⩱ ⩲ ⩳ ⩴ ⩵ ⩶ ⩷ ⩸ ⩹ ⩺ ⩻ ⩼ ⩽ ⩾ ⩿ ⪀ ⪁ ⪂ ⪃ ⪄ ⪅ ⪆ ⪇ ⪈ ⪉ ⪊ ⪋ ⪌ ⪍ ⪎ ⪏ ⪐ ⪑ ⪒ ⪓ ⪔ ⪕ ⪖ ⪗ ⪘ ⪙ ⪚ ⪛ ⪜ ⪝ ⪞ ⪟ ⪠ ⪡ ⪢ ⪣ ⪤ ⪥ ⪦ ⪧ ⪨ ⪩ ⪪ ⪫ ⪬ ⪭ ⪮ ⪯ ⪰ ⪱ ⪲ ⪳ ⪴ ⪵ ⪶ ⪷ ⪸ ⪹ ⪺ ⪻ ⪼ ⪽ ⪾ ⪿ ⫀ ⫁ ⫂ ⫃ ⫄ ⫅ ⫆ ⫇ ⫈ ⫉ ⫊ ⫋ ⫌ ⫍ ⫎ ⫏ ⫐ ⫑ ⫒ ⫓ ⫔ ⫕ ⫖ ⫗ ⫘ ⫙ ⫷ ⫸ ⫹ ⫺ ⊢ ⊣
- Todos los símbolos en el punto 1, precedidos por un punto (
.
) Que se realizará de forma elemental; - Los operadores
<:
,>:
,.!
, yin
, que no puede ir precedido por un punto (.
).
No todos estos tienen una definición en la biblioteca Base
estándar. Sin embargo, están disponibles para que otros paquetes los definan y utilicen según corresponda.
En el uso diario, la mayoría de estos operadores de comparación no son relevantes. Las más comunes utilizadas son las funciones matemáticas estándar para ordenar; vea la sección de Sintaxis para una lista.
Como la mayoría de los otros operadores en Julia, los operadores de comparación son funciones y se pueden llamar como funciones. Por ejemplo, (<)(1, 2)
es idéntico en significado a 1 < 2
.
Usando ==, ===, y isequal
Hay tres operadores de igualdad: ==
, ===
e isequal
. (El último no es realmente un operador, pero es una función y todos los operadores son funciones).
Cuándo usar ==
==
es la igualdad de valores . Devuelve true
cuando dos objetos representan, en su estado actual, el mismo valor.
Por ejemplo, es obvio que
julia> 1 == 1
true
pero además
julia> 1 == 1.0
true
julia> 1 == 1.0 + 0.0im
true
julia> 1 == 1//1
true
Los lados derechos de cada igualdad anterior son de un tipo diferente, pero aún representan el mismo valor.
Para objetos mutables, como matrices , ==
compara su valor presente.
julia> A = [1, 2, 3]
3-element Array{Int64,1}:
1
2
3
julia> B = [1, 2, 3]
3-element Array{Int64,1}:
1
2
3
julia> C = [1, 3, 2]
3-element Array{Int64,1}:
1
3
2
julia> A == B
true
julia> A == C
false
julia> A[2], A[3] = A[3], A[2] # swap 2nd and 3rd elements of A
(3,2)
julia> A
3-element Array{Int64,1}:
1
3
2
julia> A == B
false
julia> A == C
true
La mayoría de las veces, ==
es la elección correcta.
Cuándo usar ===
===
es una operación mucho más estricta que ==
. En lugar de valorar la igualdad, mide la igualdad. Dos objetos son iguales si el programa no puede distinguirlos entre sí. Asi tenemos
julia> 1 === 1
true
Como no hay manera de distinguir un 1
aparte de otro 1
. Pero
julia> 1 === 1.0
false
Porque aunque 1
y 1.0
tienen el mismo valor, son de diferentes tipos, por lo que el programa puede distinguirlos.
Además,
julia> A = [1, 2, 3]
3-element Array{Int64,1}:
1
2
3
julia> B = [1, 2, 3]
3-element Array{Int64,1}:
1
2
3
julia> A === B
false
julia> A === A
true
lo que a primera vista puede parecer sorprendente! ¿Cómo podría el programa distinguir entre los dos vectores A
y B
? Debido a que los vectores son mutables, podría modificar A
, y luego se comportaría de manera diferente a B
Pero no importa cómo modifique A
, A
siempre se comportará igual que A
Entonces, A
es igual a A
, pero no igual a B
Continuando por esta vena, observar.
julia> C = A
3-element Array{Int64,1}:
1
2
3
julia> A === C
true
Al asignar A
a C
, decimos que C
tiene un alias A
Es decir, se ha convertido en otro nombre para A
Cualquier modificación hecha a A
será observada por C
también. Por lo tanto, no hay manera de decir la diferencia entre A
y C
, por lo que son iguales.
Cuando usar isequal
La diferencia entre ==
e isequal
es muy sutil. La mayor diferencia está en cómo se manejan los números de punto flotante:
julia> NaN == NaN
false
Este resultado posiblemente sorprendente está definido por el estándar IEEE para tipos de punto flotante (IEEE-754). Pero esto no es útil en algunos casos, como la clasificación. isequal
se proporciona para esos casos:
julia> isequal(NaN, NaN)
true
En la otra cara del espectro, ==
trata el cero negativo de IEEE y el cero positivo como el mismo valor (también según lo especificado por IEEE-754). Sin embargo, estos valores tienen representaciones distintas en la memoria.
julia> 0.0
0.0
julia> -0.0
-0.0
julia> 0.0 == -0.0
true
De nuevo para propósitos de clasificación, isequal
distingue entre ellos.
julia> isequal(0.0, -0.0)
false