Buscar..


Sintaxis

  • x <y # si x es estrictamente menor que y
  • x> y # si x es estrictamente mayor que y
  • x == y # si x es igual a y
  • x === y # alternativamente x ≡ y , si x es igual a y
  • x ≤ y # alternativamente x <= y , si x es menor o igual que y
  • x ≥ y # alternativamente x >= y , si x es mayor o igual que y
  • x ≠ y # alternativamente x != y , si x no es igual a y
  • x ≈ y # si x es aproximadamente igual a y

Observaciones

Tenga cuidado al voltear los signos de comparación. Julia define muchas funciones de comparación por defecto sin definir la versión invertida correspondiente. Por ejemplo, uno puede correr

julia> Set(1:3) ⊆ Set(0:5)
true

pero no funciona hacer

julia> Set(0:5) ⊇ Set(1:3)
ERROR: UndefVarError: ⊇ not defined

Comparaciones encadenadas

Los operadores de comparación múltiple utilizados juntos están encadenados, como si estuvieran conectados a través del operador && . Esto puede ser útil para cadenas de comparación legibles y matemáticamente concisas, como

# same as 0 < i && i <= length(A)
isinbounds(A, i)       = 0 < i ≤ length(A)

# same as Set() != x && issubset(x, y)
isnonemptysubset(x, y) = Set() ≠ x ⊆ y

Sin embargo, hay una diferencia importante entre a > b > c y a > b && b > c ; en este último, el término b se evalúa dos veces. Esto no importa mucho para los símbolos antiguos, pero podría importar si los términos en sí tienen efectos secundarios. Por ejemplo,

julia> f(x) = (println(x); 2)
f (generic function with 1 method)

julia> 3 > f("test") > 1
test
true

julia> 3 > f("test") && f("test") > 1
test
test
true

Echemos un vistazo más profundo a las comparaciones encadenadas, y cómo funcionan, al ver cómo se analizan y se reducen en expresiones . Primero, considere la comparación simple, lo que podemos ver es solo una simple llamada de función:

julia> dump(:(a > b))
Expr
  head: Symbol call
  args: Array{Any}((3,))
    1: Symbol >
    2: Symbol a
    3: Symbol b
  typ: Any

Ahora, si encadenamos la comparación, notamos que el análisis ha cambiado:

julia> dump(:(a > b >= c))
Expr
  head: Symbol comparison
  args: Array{Any}((5,))
    1: Symbol a
    2: Symbol >
    3: Symbol b
    4: Symbol >=
    5: Symbol c
  typ: Any

Después de analizar, la expresión se reduce a su forma final:

julia> expand(:(a > b >= c))
:(begin 
        unless a > b goto 3
        return b >= c
        3: 
        return false
    end)

y notamos que esto es lo mismo que para a > b && b >= c :

julia> expand(:(a > b && b >= c))
:(begin 
        unless a > b goto 3
        return b >= c
        3: 
        return false
    end)

Números ordinales

Veremos cómo implementar comparaciones personalizadas implementando un tipo personalizado, números ordinales . Para simplificar la implementación, nos centraremos en un pequeño subconjunto de estos números: todos los números ordinales hasta e incluyendo ε₀. Nuestra implementación está enfocada en la simplicidad, no en la velocidad; Sin embargo, la implementación tampoco es lenta.

Almacenamos números ordinales por su forma normal de Cantor . Debido a que la aritmética ordinal no es conmutativa, tomaremos primero la convención común de almacenar los términos más significativos.

immutable OrdinalNumber <: Number
    βs::Vector{OrdinalNumber}
    cs::Vector{Int}
end

Como la forma normal de Cantor es única, podemos probar la igualdad simplemente a través de la igualdad recursiva:

0.5.0

En la versión v0.5, hay una sintaxis muy agradable para hacer esto de manera compacta:

import Base: ==
α::OrdinalNumber == β::OrdinalNumber = α.βs == β.βs && α.cs == β.cs
0.5.0

De lo contrario, define la función como es más típica:

import Base: ==
==(α::OrdinalNumber, β::OrdinalNumber) = α.βs == β.βs && α.cs == β.cs

Para finalizar nuestro pedido, debido a que este tipo tiene un pedido total, deberíamos sobrecargar la función isless :

import Base: isless
function isless(α::OrdinalNumber, β::OrdinalNumber)
    for i in 1:min(length(α.cs), length(β.cs))
        if α.βs[i] < β.βs[i]
            return true
        elseif α.βs[i] == β.βs[i] && α.cs[i] < β.cs[i]
            return true
        end
    end
    return length(α.cs) < length(β.cs)
end

Para probar nuestro pedido, podemos crear algunos métodos para hacer números ordinales. Cero, por supuesto, se obtiene al no tener términos en la forma normal de Cantor:

const ORDINAL_ZERO = OrdinalNumber([], [])
Base.zero(::Type{OrdinalNumber}) = ORDINAL_ZERO

Podemos definir una expω para calcular ω^α , y usarla para calcular 1 y ω:

expω(α) = OrdinalNumber([α], [1])
const ORDINAL_ONE = expω(ORDINAL_ZERO)
Base.one(::Type{OrdinalNumber}) = ORDINAL_ONE
const ω = expω(ORDINAL_ONE)

Ahora tenemos una función de orden completamente funcional en los números ordinales:

julia> ORDINAL_ZERO < ORDINAL_ONE < ω < expω(ω)
true

julia> ORDINAL_ONE > ORDINAL_ZERO
true

julia> sort([ORDINAL_ONE, ω, expω(ω), ORDINAL_ZERO])

4-element Array{OrdinalNumber,1}:
                                                                                                       OrdinalNumber(OrdinalNumber[],Int64[])
                                                                     OrdinalNumber(OrdinalNumber[OrdinalNumber(OrdinalNumber[],Int64[])],[1])
                                   OrdinalNumber(OrdinalNumber[OrdinalNumber(OrdinalNumber[OrdinalNumber(OrdinalNumber[],Int64[])],[1])],[1])
 OrdinalNumber(OrdinalNumber[OrdinalNumber(OrdinalNumber[OrdinalNumber(OrdinalNumber[OrdinalNumber(OrdinalNumber[],Int64[])],[1])],[1])],[1])

En el último ejemplo, vemos que la impresión de números ordinales podría ser mejor, pero el resultado es el esperado.

Operadores Estándar

Julia soporta un conjunto muy grande de operadores de comparación. Éstos incluyen

  1. Todas las siguientes secuencias de Unicode: > < >= ≥ <= ≤ == === ≡ != ≠ !== ≢ ∈ ∉ ∋ ∌ ⊆ ⊈ ⊂ ⊄ ⊊ ∝ ∊ ∍ ∥ ∦ ∷ ∺ ∻ ∽ ∾ ≁ ≃ ≄ ≅ ≆ ≇ ≈ ≉ ≊ ≋ ≌ ≍ ≎ ≐ ≑ ≒ ≓ ≔ ≕ ≖ ≗ ≘ ≙ ≚ ≛ ≜ ≝ ≞ ≟ ≣ ≦ ≧ ≨ ≩ ≪ ≫ ≬ ≭ ≮ ≯ ≰ ≱ ≲ ≳ ≴ ≵ ≶ ≷ ≸ ≹ ≺ ≻ ≼ ≽ ≾ ≿ ⊀ ⊁ ⊃ ⊅ ⊇ ⊉ ⊋ ⊏ ⊐ ⊑ ⊒ ⊜ ⊩ ⊬ ⊮ ⊰ ⊱ ⊲ ⊳ ⊴ ⊵ ⊶ ⊷ ⋍ ⋐ ⋑ ⋕ ⋖ ⋗ ⋘ ⋙ ⋚ ⋛ ⋜ ⋝ ⋞ ⋟ ⋠ ⋡ ⋢ ⋣ ⋤ ⋥ ⋦ ⋧ ⋨ ⋩ ⋪ ⋫ ⋬ ⋭ ⋲ ⋳ ⋴ ⋵ ⋶ ⋷ ⋸ ⋹ ⋺ ⋻ ⋼ ⋽ ⋾ ⋿ ⟈ ⟉ ⟒ ⦷ ⧀ ⧁ ⧡ ⧣ ⧤ ⧥ ⩦ ⩧ ⩪ ⩫ ⩬ ⩭ ⩮ ⩯ ⩰ ⩱ ⩲ ⩳ ⩴ ⩵ ⩶ ⩷ ⩸ ⩹ ⩺ ⩻ ⩼ ⩽ ⩾ ⩿ ⪀ ⪁ ⪂ ⪃ ⪄ ⪅ ⪆ ⪇ ⪈ ⪉ ⪊ ⪋ ⪌ ⪍ ⪎ ⪏ ⪐ ⪑ ⪒ ⪓ ⪔ ⪕ ⪖ ⪗ ⪘ ⪙ ⪚ ⪛ ⪜ ⪝ ⪞ ⪟ ⪠ ⪡ ⪢ ⪣ ⪤ ⪥ ⪦ ⪧ ⪨ ⪩ ⪪ ⪫ ⪬ ⪭ ⪮ ⪯ ⪰ ⪱ ⪲ ⪳ ⪴ ⪵ ⪶ ⪷ ⪸ ⪹ ⪺ ⪻ ⪼ ⪽ ⪾ ⪿ ⫀ ⫁ ⫂ ⫃ ⫄ ⫅ ⫆ ⫇ ⫈ ⫉ ⫊ ⫋ ⫌ ⫍ ⫎ ⫏ ⫐ ⫑ ⫒ ⫓ ⫔ ⫕ ⫖ ⫗ ⫘ ⫙ ⫷ ⫸ ⫹ ⫺ ⊢ ⊣ ≍ ≎ ≐ ≑ ≒ ≓ ≔ ≕ ≖ ≗ ≘ ≙ ≚ ≛ ≜ ≝ ≞ ≟ ≣ ≦ ≧ ≨ ≩ > < >= ≥ <= ≤ == === ≡ != ≠ !== ≢ ∈ ∉ ∋ ∌ ⊆ ⊈ ⊂ ⊄ ⊊ ∝ ∊ ∍ ∥ ∦ ∷ ∺ ∻ ∽ ∾ ≁ ≃ ≄ ≅ ≆ ≇ ≈ ≉ ≊ ≋ ≌ ≍ ≎ ≐ ≑ ≒ ≓ ≔ ≕ ≖ ≗ ≘ ≙ ≚ ≛ ≜ ≝ ≞ ≟ ≣ ≦ ≧ ≨ ≩ ≪ ≫ ≬ ≭ ≮ ≯ ≰ ≱ ≲ ≳ ≴ ≵ ≶ ≷ ≸ ≹ ≺ ≻ ≼ ≽ ≾ ≿ ⊀ ⊁ ⊃ ⊅ ⊇ ⊉ ⊋ ⊏ ⊐ ⊑ ⊒ ⊜ ⊩ ⊬ ⊮ ⊰ ⊱ ⊲ ⊳ ⊴ ⊵ ⊶ ⊷ ⋍ ⋐ ⋑ ⋕ ⋖ ⋗ ⋘ ⋙ ⋚ ⋛ ⋜ ⋝ ⋞ ⋟ ⋠ ⋡ ⋢ ⋣ ⋤ ⋥ ⋦ ⋧ ⋨ ⋩ ⋪ ⋫ ⋬ ⋭ ⋲ ⋳ ⋴ ⋵ ⋶ ⋷ ⋸ ⋹ ⋺ ⋻ ⋼ ⋽ ⋾ ⋿ ⟈ ⟉ ⟒ ⦷ ⧀ ⧁ ⧡ ⧣ ⧤ ⧥ ⩦ ⩧ ⩪ ⩫ ⩬ ⩭ ⩮ ⩯ ⩰ ⩱ ⩲ ⩳ ⩴ ⩵ ⩶ ⩷ ⩸ ⩹ ⩺ ⩻ ⩼ ⩽ ⩾ ⩿ ⪀ ⪁ ⪂ ⪃ ⪄ ⪅ ⪆ ⪇ ⪈ ⪉ ⪊ ⪋ ⪌ ⪍ ⪎ ⪏ ⪐ ⪑ ⪒ ⪓ ⪔ ⪕ ⪖ ⪗ ⪘ ⪙ ⪚ ⪛ ⪜ ⪝ ⪞ ⪟ ⪠ ⪡ ⪢ ⪣ ⪤ ⪥ ⪦ ⪧ ⪨ ⪩ ⪪ ⪫ ⪬ ⪭ ⪮ ⪯ ⪰ ⪱ ⪲ ⪳ ⪴ ⪵ ⪶ ⪷ ⪸ ⪹ ⪺ ⪻ ⪼ ⪽ ⪾ ⪿ ⫀ ⫁ ⫂ ⫃ ⫄ ⫅ ⫆ ⫇ ⫈ ⫉ ⫊ ⫋ ⫌ ⫍ ⫎ ⫏ ⫐ ⫑ ⫒ ⫓ ⫔ ⫕ ⫖ ⫗ ⫘ ⫙ ⫷ ⫸ ⫹ ⫺ ⊢ ⊣ ≴ ≵ ≶ ≷ ≸ ≹ ≺ ≻ ≼ > < >= ≥ <= ≤ == === ≡ != ≠ !== ≢ ∈ ∉ ∋ ∌ ⊆ ⊈ ⊂ ⊄ ⊊ ∝ ∊ ∍ ∥ ∦ ∷ ∺ ∻ ∽ ∾ ≁ ≃ ≄ ≅ ≆ ≇ ≈ ≉ ≊ ≋ ≌ ≍ ≎ ≐ ≑ ≒ ≓ ≔ ≕ ≖ ≗ ≘ ≙ ≚ ≛ ≜ ≝ ≞ ≟ ≣ ≦ ≧ ≨ ≩ ≪ ≫ ≬ ≭ ≮ ≯ ≰ ≱ ≲ ≳ ≴ ≵ ≶ ≷ ≸ ≹ ≺ ≻ ≼ ≽ ≾ ≿ ⊀ ⊁ ⊃ ⊅ ⊇ ⊉ ⊋ ⊏ ⊐ ⊑ ⊒ ⊜ ⊩ ⊬ ⊮ ⊰ ⊱ ⊲ ⊳ ⊴ ⊵ ⊶ ⊷ ⋍ ⋐ ⋑ ⋕ ⋖ ⋗ ⋘ ⋙ ⋚ ⋛ ⋜ ⋝ ⋞ ⋟ ⋠ ⋡ ⋢ ⋣ ⋤ ⋥ ⋦ ⋧ ⋨ ⋩ ⋪ ⋫ ⋬ ⋭ ⋲ ⋳ ⋴ ⋵ ⋶ ⋷ ⋸ ⋹ ⋺ ⋻ ⋼ ⋽ ⋾ ⋿ ⟈ ⟉ ⟒ ⦷ ⧀ ⧁ ⧡ ⧣ ⧤ ⧥ ⩦ ⩧ ⩪ ⩫ ⩬ ⩭ ⩮ ⩯ ⩰ ⩱ ⩲ ⩳ ⩴ ⩵ ⩶ ⩷ ⩸ ⩹ ⩺ ⩻ ⩼ ⩽ ⩾ ⩿ ⪀ ⪁ ⪂ ⪃ ⪄ ⪅ ⪆ ⪇ ⪈ ⪉ ⪊ ⪋ ⪌ ⪍ ⪎ ⪏ ⪐ ⪑ ⪒ ⪓ ⪔ ⪕ ⪖ ⪗ ⪘ ⪙ ⪚ ⪛ ⪜ ⪝ ⪞ ⪟ ⪠ ⪡ ⪢ ⪣ ⪤ ⪥ ⪦ ⪧ ⪨ ⪩ ⪪ ⪫ ⪬ ⪭ ⪮ ⪯ ⪰ ⪱ ⪲ ⪳ ⪴ ⪵ ⪶ ⪷ ⪸ ⪹ ⪺ ⪻ ⪼ ⪽ ⪾ ⪿ ⫀ ⫁ ⫂ ⫃ ⫄ ⫅ ⫆ ⫇ ⫈ ⫉ ⫊ ⫋ ⫌ ⫍ ⫎ ⫏ ⫐ ⫑ ⫒ ⫓ ⫔ ⫕ ⫖ ⫗ ⫘ ⫙ ⫷ ⫸ ⫹ ⫺ ⊢ ⊣ ⊉ ⊋ ⊏ ⊐ ⊑ ⊒ ⊜ ⊩ ⊬ ⊮ ⊰ ⊱ ⊲ ⊳ ⊴ ⊵ ⊶ ⊷ ⋍ ⋐ ⋑ ⋕ ⋖ ⋗ ⋘ ⋙ ⋚ ⋛ ⋜ ⋝ ⋞ ⋟ ⋠ ⋡ ⋢ ⋣ ⋤ ⋥ ⋦ ⋧ ⋨ ⋩ > < >= ≥ <= ≤ == === ≡ != ≠ !== ≢ ∈ ∉ ∋ ∌ ⊆ ⊈ ⊂ ⊄ ⊊ ∝ ∊ ∍ ∥ ∦ ∷ ∺ ∻ ∽ ∾ ≁ ≃ ≄ ≅ ≆ ≇ ≈ ≉ ≊ ≋ ≌ ≍ ≎ ≐ ≑ ≒ ≓ ≔ ≕ ≖ ≗ ≘ ≙ ≚ ≛ ≜ ≝ ≞ ≟ ≣ ≦ ≧ ≨ ≩ ≪ ≫ ≬ ≭ ≮ ≯ ≰ ≱ ≲ ≳ ≴ ≵ ≶ ≷ ≸ ≹ ≺ ≻ ≼ ≽ ≾ ≿ ⊀ ⊁ ⊃ ⊅ ⊇ ⊉ ⊋ ⊏ ⊐ ⊑ ⊒ ⊜ ⊩ ⊬ ⊮ ⊰ ⊱ ⊲ ⊳ ⊴ ⊵ ⊶ ⊷ ⋍ ⋐ ⋑ ⋕ ⋖ ⋗ ⋘ ⋙ ⋚ ⋛ ⋜ ⋝ ⋞ ⋟ ⋠ ⋡ ⋢ ⋣ ⋤ ⋥ ⋦ ⋧ ⋨ ⋩ ⋪ ⋫ ⋬ ⋭ ⋲ ⋳ ⋴ ⋵ ⋶ ⋷ ⋸ ⋹ ⋺ ⋻ ⋼ ⋽ ⋾ ⋿ ⟈ ⟉ ⟒ ⦷ ⧀ ⧁ ⧡ ⧣ ⧤ ⧥ ⩦ ⩧ ⩪ ⩫ ⩬ ⩭ ⩮ ⩯ ⩰ ⩱ ⩲ ⩳ ⩴ ⩵ ⩶ ⩷ ⩸ ⩹ ⩺ ⩻ ⩼ ⩽ ⩾ ⩿ ⪀ ⪁ ⪂ ⪃ ⪄ ⪅ ⪆ ⪇ ⪈ ⪉ ⪊ ⪋ ⪌ ⪍ ⪎ ⪏ ⪐ ⪑ ⪒ ⪓ ⪔ ⪕ ⪖ ⪗ ⪘ ⪙ ⪚ ⪛ ⪜ ⪝ ⪞ ⪟ ⪠ ⪡ ⪢ ⪣ ⪤ ⪥ ⪦ ⪧ ⪨ ⪩ ⪪ ⪫ ⪬ ⪭ ⪮ ⪯ ⪰ ⪱ ⪲ ⪳ ⪴ ⪵ ⪶ ⪷ ⪸ ⪹ ⪺ ⪻ ⪼ ⪽ ⪾ ⪿ ⫀ ⫁ ⫂ ⫃ ⫄ ⫅ ⫆ ⫇ ⫈ ⫉ ⫊ ⫋ ⫌ ⫍ ⫎ ⫏ ⫐ ⫑ ⫒ ⫓ ⫔ ⫕ ⫖ ⫗ ⫘ ⫙ ⫷ ⫸ ⫹ ⫺ ⊢ ⊣ ⋶ ⋷ ⋸ ⋹ ⋺ ⋻ ⋼ ⋽ ⋾ ⋿ ⟈ ⟉ ⟒ ⦷ ⧀ ⧁ ⧡ ⧣ ⧤ ⧥ ⩦ ⩧ ⩪ ⩫ ⩬ ⩭ ⩮ ⩯ ⩰ ⩱ ⩲ ⩳ ⩴ ⩵ ⩶ ⩷ ⩸ ⩹ ⩺ ⩻ ⩼ ⩽ > < >= ≥ <= ≤ == === ≡ != ≠ !== ≢ ∈ ∉ ∋ ∌ ⊆ ⊈ ⊂ ⊄ ⊊ ∝ ∊ ∍ ∥ ∦ ∷ ∺ ∻ ∽ ∾ ≁ ≃ ≄ ≅ ≆ ≇ ≈ ≉ ≊ ≋ ≌ ≍ ≎ ≐ ≑ ≒ ≓ ≔ ≕ ≖ ≗ ≘ ≙ ≚ ≛ ≜ ≝ ≞ ≟ ≣ ≦ ≧ ≨ ≩ ≪ ≫ ≬ ≭ ≮ ≯ ≰ ≱ ≲ ≳ ≴ ≵ ≶ ≷ ≸ ≹ ≺ ≻ ≼ ≽ ≾ ≿ ⊀ ⊁ ⊃ ⊅ ⊇ ⊉ ⊋ ⊏ ⊐ ⊑ ⊒ ⊜ ⊩ ⊬ ⊮ ⊰ ⊱ ⊲ ⊳ ⊴ ⊵ ⊶ ⊷ ⋍ ⋐ ⋑ ⋕ ⋖ ⋗ ⋘ ⋙ ⋚ ⋛ ⋜ ⋝ ⋞ ⋟ ⋠ ⋡ ⋢ ⋣ ⋤ ⋥ ⋦ ⋧ ⋨ ⋩ ⋪ ⋫ ⋬ ⋭ ⋲ ⋳ ⋴ ⋵ ⋶ ⋷ ⋸ ⋹ ⋺ ⋻ ⋼ ⋽ ⋾ ⋿ ⟈ ⟉ ⟒ ⦷ ⧀ ⧁ ⧡ ⧣ ⧤ ⧥ ⩦ ⩧ ⩪ ⩫ ⩬ ⩭ ⩮ ⩯ ⩰ ⩱ ⩲ ⩳ ⩴ ⩵ ⩶ ⩷ ⩸ ⩹ ⩺ ⩻ ⩼ ⩽ ⩾ ⩿ ⪀ ⪁ ⪂ ⪃ ⪄ ⪅ ⪆ ⪇ ⪈ ⪉ ⪊ ⪋ ⪌ ⪍ ⪎ ⪏ ⪐ ⪑ ⪒ ⪓ ⪔ ⪕ ⪖ ⪗ ⪘ ⪙ ⪚ ⪛ ⪜ ⪝ ⪞ ⪟ ⪠ ⪡ ⪢ ⪣ ⪤ ⪥ ⪦ ⪧ ⪨ ⪩ ⪪ ⪫ ⪬ ⪭ ⪮ ⪯ ⪰ ⪱ ⪲ ⪳ ⪴ ⪵ ⪶ ⪷ ⪸ ⪹ ⪺ ⪻ ⪼ ⪽ ⪾ ⪿ ⫀ ⫁ ⫂ ⫃ ⫄ ⫅ ⫆ ⫇ ⫈ ⫉ ⫊ ⫋ ⫌ ⫍ ⫎ ⫏ ⫐ ⫑ ⫒ ⫓ ⫔ ⫕ ⫖ ⫗ ⫘ ⫙ ⫷ ⫸ ⫹ ⫺ ⊢ ⊣ ⪆ ⪇ ⪈ ⪉ ⪊ ⪋ ⪌ ⪍ ⪎ ⪏ ⪐ ⪑ ⪒ ⪓ ⪔ ⪕ ⪖ ⪗ ⪘ ⪙ ⪚ ⪛ ⪜ ⪝ ⪞ ⪟ ⪠ ⪡ ⪢ ⪣ ⪤ ⪥ ⪦ ⪧ ⪨ ⪩ ⪪ ⪫ ⪬ ⪭ ⪮ ⪯ > < >= ≥ <= ≤ == === ≡ != ≠ !== ≢ ∈ ∉ ∋ ∌ ⊆ ⊈ ⊂ ⊄ ⊊ ∝ ∊ ∍ ∥ ∦ ∷ ∺ ∻ ∽ ∾ ≁ ≃ ≄ ≅ ≆ ≇ ≈ ≉ ≊ ≋ ≌ ≍ ≎ ≐ ≑ ≒ ≓ ≔ ≕ ≖ ≗ ≘ ≙ ≚ ≛ ≜ ≝ ≞ ≟ ≣ ≦ ≧ ≨ ≩ ≪ ≫ ≬ ≭ ≮ ≯ ≰ ≱ ≲ ≳ ≴ ≵ ≶ ≷ ≸ ≹ ≺ ≻ ≼ ≽ ≾ ≿ ⊀ ⊁ ⊃ ⊅ ⊇ ⊉ ⊋ ⊏ ⊐ ⊑ ⊒ ⊜ ⊩ ⊬ ⊮ ⊰ ⊱ ⊲ ⊳ ⊴ ⊵ ⊶ ⊷ ⋍ ⋐ ⋑ ⋕ ⋖ ⋗ ⋘ ⋙ ⋚ ⋛ ⋜ ⋝ ⋞ ⋟ ⋠ ⋡ ⋢ ⋣ ⋤ ⋥ ⋦ ⋧ ⋨ ⋩ ⋪ ⋫ ⋬ ⋭ ⋲ ⋳ ⋴ ⋵ ⋶ ⋷ ⋸ ⋹ ⋺ ⋻ ⋼ ⋽ ⋾ ⋿ ⟈ ⟉ ⟒ ⦷ ⧀ ⧁ ⧡ ⧣ ⧤ ⧥ ⩦ ⩧ ⩪ ⩫ ⩬ ⩭ ⩮ ⩯ ⩰ ⩱ ⩲ ⩳ ⩴ ⩵ ⩶ ⩷ ⩸ ⩹ ⩺ ⩻ ⩼ ⩽ ⩾ ⩿ ⪀ ⪁ ⪂ ⪃ ⪄ ⪅ ⪆ ⪇ ⪈ ⪉ ⪊ ⪋ ⪌ ⪍ ⪎ ⪏ ⪐ ⪑ ⪒ ⪓ ⪔ ⪕ ⪖ ⪗ ⪘ ⪙ ⪚ ⪛ ⪜ ⪝ ⪞ ⪟ ⪠ ⪡ ⪢ ⪣ ⪤ ⪥ ⪦ ⪧ ⪨ ⪩ ⪪ ⪫ ⪬ ⪭ ⪮ ⪯ ⪰ ⪱ ⪲ ⪳ ⪴ ⪵ ⪶ ⪷ ⪸ ⪹ ⪺ ⪻ ⪼ ⪽ ⪾ ⪿ ⫀ ⫁ ⫂ ⫃ ⫄ ⫅ ⫆ ⫇ ⫈ ⫉ ⫊ ⫋ ⫌ ⫍ ⫎ ⫏ ⫐ ⫑ ⫒ ⫓ ⫔ ⫕ ⫖ ⫗ ⫘ ⫙ ⫷ ⫸ ⫹ ⫺ ⊢ ⊣
  2. Todos los símbolos en el punto 1, precedidos por un punto ( . ) Que se realizará de forma elemental;
  3. Los operadores <: , >: , .! , y in , que no puede ir precedido por un punto ( . ).

No todos estos tienen una definición en la biblioteca Base estándar. Sin embargo, están disponibles para que otros paquetes los definan y utilicen según corresponda.

En el uso diario, la mayoría de estos operadores de comparación no son relevantes. Las más comunes utilizadas son las funciones matemáticas estándar para ordenar; vea la sección de Sintaxis para una lista.

Como la mayoría de los otros operadores en Julia, los operadores de comparación son funciones y se pueden llamar como funciones. Por ejemplo, (<)(1, 2) es idéntico en significado a 1 < 2 .

Usando ==, ===, y isequal

Hay tres operadores de igualdad: == , === e isequal . (El último no es realmente un operador, pero es una función y todos los operadores son funciones).

Cuándo usar ==

== es la igualdad de valores . Devuelve true cuando dos objetos representan, en su estado actual, el mismo valor.

Por ejemplo, es obvio que

julia> 1 == 1
true

pero además

julia> 1 == 1.0
true

julia> 1 == 1.0 + 0.0im
true

julia> 1 == 1//1
true

Los lados derechos de cada igualdad anterior son de un tipo diferente, pero aún representan el mismo valor.

Para objetos mutables, como matrices , == compara su valor presente.

julia> A = [1, 2, 3]
3-element Array{Int64,1}:
 1
 2
 3

julia> B = [1, 2, 3]
3-element Array{Int64,1}:
 1
 2
 3

julia> C = [1, 3, 2]
3-element Array{Int64,1}:
 1
 3
 2

julia> A == B
true

julia> A == C
false

julia> A[2], A[3] = A[3], A[2]  # swap 2nd and 3rd elements of A
(3,2)

julia> A
3-element Array{Int64,1}:
 1
 3
 2

julia> A == B
false

julia> A == C
true

La mayoría de las veces, == es la elección correcta.

Cuándo usar ===

=== es una operación mucho más estricta que == . En lugar de valorar la igualdad, mide la igualdad. Dos objetos son iguales si el programa no puede distinguirlos entre sí. Asi tenemos

julia> 1 === 1
true

Como no hay manera de distinguir un 1 aparte de otro 1 . Pero

julia> 1 === 1.0
false

Porque aunque 1 y 1.0 tienen el mismo valor, son de diferentes tipos, por lo que el programa puede distinguirlos.

Además,

julia> A = [1, 2, 3]
3-element Array{Int64,1}:
 1
 2
 3

julia> B = [1, 2, 3]
3-element Array{Int64,1}:
 1
 2
 3

julia> A === B
false

julia> A === A
true

lo que a primera vista puede parecer sorprendente! ¿Cómo podría el programa distinguir entre los dos vectores A y B ? Debido a que los vectores son mutables, podría modificar A , y luego se comportaría de manera diferente a B Pero no importa cómo modifique A , A siempre se comportará igual que A Entonces, A es igual a A , pero no igual a B

Continuando por esta vena, observar.

julia> C = A
3-element Array{Int64,1}:
 1
 2
 3

julia> A === C
true

Al asignar A a C , decimos que C tiene un alias A Es decir, se ha convertido en otro nombre para A Cualquier modificación hecha a A será observada por C también. Por lo tanto, no hay manera de decir la diferencia entre A y C , por lo que son iguales.

Cuando usar isequal

La diferencia entre == e isequal es muy sutil. La mayor diferencia está en cómo se manejan los números de punto flotante:

julia> NaN == NaN
false

Este resultado posiblemente sorprendente está definido por el estándar IEEE para tipos de punto flotante (IEEE-754). Pero esto no es útil en algunos casos, como la clasificación. isequal se proporciona para esos casos:

julia> isequal(NaN, NaN)
true

En la otra cara del espectro, == trata el cero negativo de IEEE y el cero positivo como el mismo valor (también según lo especificado por IEEE-754). Sin embargo, estos valores tienen representaciones distintas en la memoria.

julia> 0.0
0.0

julia> -0.0
-0.0

julia> 0.0 == -0.0
true

De nuevo para propósitos de clasificación, isequal distingue entre ellos.

julia> isequal(0.0, -0.0)
false


Modified text is an extract of the original Stack Overflow Documentation
Licenciado bajo CC BY-SA 3.0
No afiliado a Stack Overflow