Recherche…
Remarques
Il est préférable d'utiliser std :: shared_mutex que std :: shared_timed_mutex .
La différence de performance est plus que doublée.
Si vous souhaitez utiliser RWLock, vous trouverez deux options.
C'est std :: shared_mutex et shared_timed_mutex.
Vous pouvez penser que std :: shared_timed_mutex est juste la version 'std :: shared_mutex + time method'.
Mais la mise en œuvre est totalement différente.
Le code ci-dessous est l'implémentation MSVC14.1 de std :: shared_mutex.
class shared_mutex
{
public:
typedef _Smtx_t * native_handle_type;
shared_mutex() _NOEXCEPT
: _Myhandle(0)
{ // default construct
}
~shared_mutex() _NOEXCEPT
{ // destroy the object
}
void lock() _NOEXCEPT
{ // lock exclusive
_Smtx_lock_exclusive(&_Myhandle);
}
bool try_lock() _NOEXCEPT
{ // try to lock exclusive
return (_Smtx_try_lock_exclusive(&_Myhandle) != 0);
}
void unlock() _NOEXCEPT
{ // unlock exclusive
_Smtx_unlock_exclusive(&_Myhandle);
}
void lock_shared() _NOEXCEPT
{ // lock non-exclusive
_Smtx_lock_shared(&_Myhandle);
}
bool try_lock_shared() _NOEXCEPT
{ // try to lock non-exclusive
return (_Smtx_try_lock_shared(&_Myhandle) != 0);
}
void unlock_shared() _NOEXCEPT
{ // unlock non-exclusive
_Smtx_unlock_shared(&_Myhandle);
}
native_handle_type native_handle() _NOEXCEPT
{ // get native handle
return (&_Myhandle);
}
shared_mutex(const shared_mutex&) = delete;
shared_mutex& operator=(const shared_mutex&) = delete;
private:
_Smtx_t _Myhandle;
};
void __cdecl _Smtx_lock_exclusive(_Smtx_t * smtx)
{ /* lock shared mutex exclusively */
AcquireSRWLockExclusive(reinterpret_cast<PSRWLOCK>(smtx));
}
void __cdecl _Smtx_lock_shared(_Smtx_t * smtx)
{ /* lock shared mutex non-exclusively */
AcquireSRWLockShared(reinterpret_cast<PSRWLOCK>(smtx));
}
int __cdecl _Smtx_try_lock_exclusive(_Smtx_t * smtx)
{ /* try to lock shared mutex exclusively */
return (TryAcquireSRWLockExclusive(reinterpret_cast<PSRWLOCK>(smtx)));
}
int __cdecl _Smtx_try_lock_shared(_Smtx_t * smtx)
{ /* try to lock shared mutex non-exclusively */
return (TryAcquireSRWLockShared(reinterpret_cast<PSRWLOCK>(smtx)));
}
void __cdecl _Smtx_unlock_exclusive(_Smtx_t * smtx)
{ /* unlock exclusive shared mutex */
ReleaseSRWLockExclusive(reinterpret_cast<PSRWLOCK>(smtx));
}
void __cdecl _Smtx_unlock_shared(_Smtx_t * smtx)
{ /* unlock non-exclusive shared mutex */
ReleaseSRWLockShared(reinterpret_cast<PSRWLOCK>(smtx));
}
Vous pouvez voir que std :: shared_mutex est implémenté dans Windows Slim Reader / Write Locks ( https://msdn.microsoft.com/ko-kr/library/windows/desktop/aa904937(v=vs.85).aspx)
Maintenant, regardons l'implémentation de std :: shared_timed_mutex.
Le code ci-dessous est l'implémentation MSVC14.1 de std :: shared_timed_mutex.
class shared_timed_mutex
{
typedef unsigned int _Read_cnt_t;
static constexpr _Read_cnt_t _Max_readers = _Read_cnt_t(-1);
public:
shared_timed_mutex() _NOEXCEPT
: _Mymtx(), _Read_queue(), _Write_queue(),
_Readers(0), _Writing(false)
{ // default construct
}
~shared_timed_mutex() _NOEXCEPT
{ // destroy the object
}
void lock()
{ // lock exclusive
unique_lock<mutex> _Lock(_Mymtx);
while (_Writing)
_Write_queue.wait(_Lock);
_Writing = true;
while (0 < _Readers)
_Read_queue.wait(_Lock); // wait for writing, no readers
}
bool try_lock()
{ // try to lock exclusive
lock_guard<mutex> _Lock(_Mymtx);
if (_Writing || 0 < _Readers)
return (false);
else
{ // set writing, no readers
_Writing = true;
return (true);
}
}
template<class _Rep,
class _Period>
bool try_lock_for(
const chrono::duration<_Rep, _Period>& _Rel_time)
{ // try to lock for duration
return (try_lock_until(chrono::steady_clock::now() + _Rel_time));
}
template<class _Clock,
class _Duration>
bool try_lock_until(
const chrono::time_point<_Clock, _Duration>& _Abs_time)
{ // try to lock until time point
auto _Not_writing = [this] { return (!_Writing); };
auto _Zero_readers = [this] { return (_Readers == 0); };
unique_lock<mutex> _Lock(_Mymtx);
if (!_Write_queue.wait_until(_Lock, _Abs_time, _Not_writing))
return (false);
_Writing = true;
if (!_Read_queue.wait_until(_Lock, _Abs_time, _Zero_readers))
{ // timeout, leave writing state
_Writing = false;
_Lock.unlock(); // unlock before notifying, for efficiency
_Write_queue.notify_all();
return (false);
}
return (true);
}
void unlock()
{ // unlock exclusive
{ // unlock before notifying, for efficiency
lock_guard<mutex> _Lock(_Mymtx);
_Writing = false;
}
_Write_queue.notify_all();
}
void lock_shared()
{ // lock non-exclusive
unique_lock<mutex> _Lock(_Mymtx);
while (_Writing || _Readers == _Max_readers)
_Write_queue.wait(_Lock);
++_Readers;
}
bool try_lock_shared()
{ // try to lock non-exclusive
lock_guard<mutex> _Lock(_Mymtx);
if (_Writing || _Readers == _Max_readers)
return (false);
else
{ // count another reader
++_Readers;
return (true);
}
}
template<class _Rep,
class _Period>
bool try_lock_shared_for(
const chrono::duration<_Rep, _Period>& _Rel_time)
{ // try to lock non-exclusive for relative time
return (try_lock_shared_until(_Rel_time
+ chrono::steady_clock::now()));
}
template<class _Time>
bool _Try_lock_shared_until(_Time _Abs_time)
{ // try to lock non-exclusive until absolute time
auto _Can_acquire = [this] {
return (!_Writing && _Readers < _Max_readers); };
unique_lock<mutex> _Lock(_Mymtx);
if (!_Write_queue.wait_until(_Lock, _Abs_time, _Can_acquire))
return (false);
++_Readers;
return (true);
}
template<class _Clock,
class _Duration>
bool try_lock_shared_until(
const chrono::time_point<_Clock, _Duration>& _Abs_time)
{ // try to lock non-exclusive until absolute time
return (_Try_lock_shared_until(_Abs_time));
}
bool try_lock_shared_until(const xtime *_Abs_time)
{ // try to lock non-exclusive until absolute time
return (_Try_lock_shared_until(_Abs_time));
}
void unlock_shared()
{ // unlock non-exclusive
_Read_cnt_t _Local_readers;
bool _Local_writing;
{ // unlock before notifying, for efficiency
lock_guard<mutex> _Lock(_Mymtx);
--_Readers;
_Local_readers = _Readers;
_Local_writing = _Writing;
}
if (_Local_writing && _Local_readers == 0)
_Read_queue.notify_one();
else if (!_Local_writing && _Local_readers == _Max_readers - 1)
_Write_queue.notify_all();
}
shared_timed_mutex(const shared_timed_mutex&) = delete;
shared_timed_mutex& operator=(const shared_timed_mutex&) = delete;
private:
mutex _Mymtx;
condition_variable _Read_queue, _Write_queue;
_Read_cnt_t _Readers;
bool _Writing;
};
class stl_condition_variable_win7 final : public stl_condition_variable_interface
{
public:
stl_condition_variable_win7()
{
__crtInitializeConditionVariable(&m_condition_variable);
}
~stl_condition_variable_win7() = delete;
stl_condition_variable_win7(const stl_condition_variable_win7&) = delete;
stl_condition_variable_win7& operator=(const stl_condition_variable_win7&) = delete;
virtual void destroy() override {}
virtual void wait(stl_critical_section_interface *lock) override
{
if (!stl_condition_variable_win7::wait_for(lock, INFINITE))
std::terminate();
}
virtual bool wait_for(stl_critical_section_interface *lock, unsigned int timeout) override
{
return __crtSleepConditionVariableSRW(&m_condition_variable, static_cast<stl_critical_section_win7 *>(lock)->native_handle(), timeout, 0) != 0;
}
virtual void notify_one() override
{
__crtWakeConditionVariable(&m_condition_variable);
}
virtual void notify_all() override
{
__crtWakeAllConditionVariable(&m_condition_variable);
}
private:
CONDITION_VARIABLE m_condition_variable;
};
Vous pouvez voir que std :: shared_timed_mutex est implémenté dans std :: condition_value.
C'est une grande différence.
Alors vérifions les performances de deux d'entre eux.
Ceci est le résultat d'un test de lecture / écriture de 1000 millisecondes.
std :: shared_mutex traité en lecture / écriture plus de 2 fois plus que std :: shared_timed_mutex.
Dans cet exemple, le taux de lecture / écriture est le même, mais le taux de lecture est plus fréquent que le taux d’écriture réel.
Par conséquent, la différence de performance peut être plus grande.
le code ci-dessous est le code dans cet exemple.
void useSTLSharedMutex()
{
std::shared_mutex shared_mtx_lock;
std::vector<std::thread> readThreads;
std::vector<std::thread> writeThreads;
std::list<int> data = { 0 };
volatile bool exit = false;
std::atomic<int> readProcessedCnt(0);
std::atomic<int> writeProcessedCnt(0);
for (unsigned int i = 0; i < std::thread::hardware_concurrency(); i++)
{
readThreads.push_back(std::thread([&data, &exit, &shared_mtx_lock, &readProcessedCnt]() {
std::list<int> mydata;
int localProcessCnt = 0;
while (true)
{
shared_mtx_lock.lock_shared();
mydata.push_back(data.back());
++localProcessCnt;
shared_mtx_lock.unlock_shared();
if (exit)
break;
}
std::atomic_fetch_add(&readProcessedCnt, localProcessCnt);
}));
writeThreads.push_back(std::thread([&data, &exit, &shared_mtx_lock, &writeProcessedCnt]() {
int localProcessCnt = 0;
while (true)
{
shared_mtx_lock.lock();
data.push_back(rand() % 100);
++localProcessCnt;
shared_mtx_lock.unlock();
if (exit)
break;
}
std::atomic_fetch_add(&writeProcessedCnt, localProcessCnt);
}));
}
std::this_thread::sleep_for(std::chrono::milliseconds(MAIN_WAIT_MILLISECONDS));
exit = true;
for (auto &r : readThreads)
r.join();
for (auto &w : writeThreads)
w.join();
std::cout << "STLSharedMutex READ : " << readProcessedCnt << std::endl;
std::cout << "STLSharedMutex WRITE : " << writeProcessedCnt << std::endl;
std::cout << "TOTAL READ&WRITE : " << readProcessedCnt + writeProcessedCnt << std::endl << std::endl;
}
void useSTLSharedTimedMutex()
{
std::shared_timed_mutex shared_mtx_lock;
std::vector<std::thread> readThreads;
std::vector<std::thread> writeThreads;
std::list<int> data = { 0 };
volatile bool exit = false;
std::atomic<int> readProcessedCnt(0);
std::atomic<int> writeProcessedCnt(0);
for (unsigned int i = 0; i < std::thread::hardware_concurrency(); i++)
{
readThreads.push_back(std::thread([&data, &exit, &shared_mtx_lock, &readProcessedCnt]() {
std::list<int> mydata;
int localProcessCnt = 0;
while (true)
{
shared_mtx_lock.lock_shared();
mydata.push_back(data.back());
++localProcessCnt;
shared_mtx_lock.unlock_shared();
if (exit)
break;
}
std::atomic_fetch_add(&readProcessedCnt, localProcessCnt);
}));
writeThreads.push_back(std::thread([&data, &exit, &shared_mtx_lock, &writeProcessedCnt]() {
int localProcessCnt = 0;
while (true)
{
shared_mtx_lock.lock();
data.push_back(rand() % 100);
++localProcessCnt;
shared_mtx_lock.unlock();
if (exit)
break;
}
std::atomic_fetch_add(&writeProcessedCnt, localProcessCnt);
}));
}
std::this_thread::sleep_for(std::chrono::milliseconds(MAIN_WAIT_MILLISECONDS));
exit = true;
for (auto &r : readThreads)
r.join();
for (auto &w : writeThreads)
w.join();
std::cout << "STLSharedTimedMutex READ : " << readProcessedCnt << std::endl;
std::cout << "STLSharedTimedMutex WRITE : " << writeProcessedCnt << std::endl;
std::cout << "TOTAL READ&WRITE : " << readProcessedCnt + writeProcessedCnt << std::endl << std::endl;
}
std :: unique_lock, std :: shared_lock, std :: lock_guard
Utilisé pour l'acquisition de style RAII de verrous d'essai, de verrous d'essais temporisés et de verrous récursifs.
std::unique_lock
permet la propriété exclusive de mutex.
std::shared_lock
permet la propriété partagée des mutex. Plusieurs threads peuvent contenir std::shared_locks
sur un std::shared_mutex
. Disponible à partir de C ++ 14.
std::lock_guard
est une alternative légère à std::unique_lock
et std::shared_lock
.
#include <unordered_map>
#include <mutex>
#include <shared_mutex>
#include <thread>
#include <string>
#include <iostream>
class PhoneBook {
public:
std::string getPhoneNo( const std::string & name )
{
std::shared_lock<std::shared_timed_mutex> l(_protect);
auto it = _phonebook.find( name );
if ( it != _phonebook.end() )
return (*it).second;
return "";
}
void addPhoneNo ( const std::string & name, const std::string & phone )
{
std::unique_lock<std::shared_timed_mutex> l(_protect);
_phonebook[name] = phone;
}
std::shared_timed_mutex _protect;
std::unordered_map<std::string,std::string> _phonebook;
};
Stratégies pour les classes de verrouillage: std :: try_to_lock, std :: adopt_lock, std :: defer_lock
Lors de la création d'un std :: unique_lock, vous avez le choix entre trois stratégies de verrouillage: std::try_to_lock
, std::defer_lock
et std::adopt_lock
-
std::try_to_lock
permet d'essayer un verrou sans bloquer:
{
std::atomic_int temp {0};
std::mutex _mutex;
std::thread t( [&](){
while( temp!= -1){
std::this_thread::sleep_for(std::chrono::seconds(5));
std::unique_lock<std::mutex> lock( _mutex, std::try_to_lock);
if(lock.owns_lock()){
//do something
temp=0;
}
}
});
while ( true )
{
std::this_thread::sleep_for(std::chrono::seconds(1));
std::unique_lock<std::mutex> lock( _mutex, std::try_to_lock);
if(lock.owns_lock()){
if (temp < INT_MAX){
++temp;
}
std::cout << temp << std::endl;
}
}
}
-
std::defer_lock
permet de créer une structure de verrouillage sans acquérir le verrou. Lorsque vous verrouillez plusieurs mutex, il y a une possibilité de blocage si deux appelants de fonctions tentent d'acquérir les verrous en même temps:
{
std::unique_lock<std::mutex> lock1(_mutex1, std::defer_lock);
std::unique_lock<std::mutex> lock2(_mutex2, std::defer_lock);
lock1.lock()
lock2.lock(); // deadlock here
std::cout << "Locked! << std::endl;
//...
}
Avec le code suivant, quoi qu'il arrive dans la fonction, les verrous sont acquis et libérés dans l'ordre approprié:
{
std::unique_lock<std::mutex> lock1(_mutex1, std::defer_lock);
std::unique_lock<std::mutex> lock2(_mutex2, std::defer_lock);
std::lock(lock1,lock2); // no deadlock possible
std::cout << "Locked! << std::endl;
//...
}
-
std::adopt_lock
ne tente pas de verrouiller une seconde fois si le thread appelant possède actuellement le verrou.
{
std::unique_lock<std::mutex> lock1(_mutex1, std::adopt_lock);
std::unique_lock<std::mutex> lock2(_mutex2, std::adopt_lock);
std::cout << "Locked! << std::endl;
//...
}
Il faut garder à l'esprit que std :: adopt_lock ne remplace pas l'utilisation de mutex récursive. Lorsque le verrou est hors de portée, le mutex est libéré .
std :: mutex
std :: mutex est une structure de synchronisation simple et non récursive utilisée pour protéger les données auxquelles accèdent plusieurs threads.
std::atomic_int temp{0};
std::mutex _mutex;
std::thread t( [&](){
while( temp!= -1){
std::this_thread::sleep_for(std::chrono::seconds(5));
std::unique_lock<std::mutex> lock( _mutex);
temp=0;
}
});
while ( true )
{
std::this_thread::sleep_for(std::chrono::milliseconds(1));
std::unique_lock<std::mutex> lock( _mutex, std::try_to_lock);
if ( temp < INT_MAX )
temp++;
cout << temp << endl;
}
std :: scoped_lock (C ++ 17)
std::scoped_lock
fournit une sémantique de style RAII pour posséder un autre mutex, combinée aux algorithmes d'évitement de verrou utilisés par std::lock
. Lorsque std::scoped_lock
est détruit, les mutex sont libérés dans l'ordre inverse duquel ils ont été acquis.
{
std::scoped_lock lock{_mutex1,_mutex2};
//do something
}
Types de mutex
C ++ 1x propose une sélection de classes de mutex:
- std :: mutex - offre une fonctionnalité de verrouillage simple.
- std :: timed_mutex - offre la fonctionnalité try_to_lock
- std :: recursive_mutex - permet le verrouillage récursif par le même thread.
- std :: shared_mutex, std :: shared_timed_mutex - propose une fonctionnalité de verrouillage partagée et unique.
std :: lock
std::lock
utilise des algorithmes d'évitement de blocage pour verrouiller un ou plusieurs mutex. Si une exception est levée pendant un appel pour verrouiller plusieurs objets, std::lock
déverrouille les objets verrouillés avec succès avant de relancer l'exception.
std::lock(_mutex1, _mutex2);