Szukaj…


Cięcie pręta, aby uzyskać maksymalny zysk

Biorąc pod uwagę pręt o długości n cali i tablicę długości m cen, która zawiera ceny wszystkich sztuk mniejszych niż n. Musimy znaleźć maksymalną wartość możliwą do uzyskania przez cięcie pręta i sprzedaż elementów. Na przykład, jeśli długość pręta wynosi 8, a wartości różnych elementów podano w następujący sposób, to maksymalna możliwa do uzyskania wartość wynosi 22 .

       +---+---+---+---+---+---+---+---+
 (price)| 1 | 5 | 8 | 9 | 10| 17| 17| 20|
        +---+---+---+---+---+---+---+---+

Użyjemy tablicy 2D dp [m] [n + 1], gdzie n jest długością pręta, a m jest długością tablicy cen. W naszym przykładzie potrzebujemy dp [8] [9] . Tutaj dp [i] [j] będzie oznaczać cenę maksymalną, sprzedając wędkę o długości j. Możemy mieć maksymalną wartość długości j jako całości lub moglibyśmy złamać długość, aby zmaksymalizować zysk.

Na początku dla kolumny 0 nic to nie przyczyni, dlatego oznaczenie wszystkich wartości jako 0. Wszystkie wartości 0 kolumny będą wynosić 0. Dla dp [0] [1] , jaka jest maksymalna wartość, którą możemy uzyskać sprzedawany pręt o długości 1. Będzie to 1. Podobnie jak w przypadku pręta o długości 2 dp [0] [2] możemy mieć 2 (1 + 1). Trwa to do dp [0] [8] . Więc po pierwszej iteracji będzie wyglądać nasza tablica dp [].

      +---+---+---+---+---+---+---+---+---+
 (price)| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
        +---+---+---+---+---+---+---+---+---+
  (1) 1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 9 |
        +---+---+---+---+---+---+---+---+---+
  (5) 2 | 0 |   |   |   |   |   |   |   |   |
        +---+---+---+---+---+---+---+---+---+
  (8) 3 | 0 |   |   |   |   |   |   |   |   |
        +---+---+---+---+---+---+---+---+---+
  (9) 4 | 0 |   |   |   |   |   |   |   |   |
        +---+---+---+---+---+---+---+---+---+
 (10) 5 | 0 |   |   |   |   |   |   |   |   |
        +---+---+---+---+---+---+---+---+---+
 (17) 6 | 0 |   |   |   |   |   |   |   |   |
        +---+---+---+---+---+---+---+---+---+
 (17) 7 | 0 |   |   |   |   |   |   |   |   |
        +---+---+---+---+---+---+---+---+---+
 (20) 8 | 0 |   |   |   |   |   |   |   |   |
        +---+---+---+---+---+---+---+---+---+

W przypadku dp [2] [2] zadajmy sobie pytanie, co jest najlepsze, co mogę uzyskać, jeśli połamię pręt na dwie części (1,1) lub wezmę pręt jako całość (długość = 2). że jeśli połamię pręt na dwie części, maksymalny zysk, jaki mogę osiągnąć, to 2, a jeśli mam pręt jako całość, mogę go sprzedać za 5. Po drugiej iteracji tablica dp będzie wyglądać następująco:

     +---+---+---+---+---+---+---+---+---+
 (price)| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
        +---+---+---+---+---+---+---+---+---+
  (1) 1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 9 |
        +---+---+---+---+---+---+---+---+---+
  (5) 2 | 0 | 1 | 5 | 6 | 10| 11| 15| 16| 20|
        +---+---+---+---+---+---+---+---+---+
  (8) 3 | 0 |   |   |   |   |   |   |   |   |
        +---+---+---+---+---+---+---+---+---+
  (9) 4 | 0 |   |   |   |   |   |   |   |   |
        +---+---+---+---+---+---+---+---+---+
 (10) 5 | 0 |   |   |   |   |   |   |   |   |
        +---+---+---+---+---+---+---+---+---+
 (17) 6 | 0 |   |   |   |   |   |   |   |   |
        +---+---+---+---+---+---+---+---+---+
 (17) 7 | 0 |   |   |   |   |   |   |   |   |
        +---+---+---+---+---+---+---+---+---+
 (20) 8 | 0 |   |   |   |   |   |   |   |   |
        +---+---+---+---+---+---+---+---+---+ 

Aby obliczyć dp [i] [j] nasza formuła będzie wyglądać następująco:

if j>=i
    dp[i][j] = Max(dp[i-1][j], price[i]+arr[i][j-i]);
else
    dp[i][j] = dp[i-1][j];

Po ostatniej iteracji będzie wyglądała nasza tablica dp []

       +---+---+---+---+---+---+---+---+---+
 (price)| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
        +---+---+---+---+---+---+---+---+---+
  (1) 1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 9 |
        +---+---+---+---+---+---+---+---+---+
  (5) 2 | 0 | 1 | 5 | 6 | 10| 11| 15| 16| 20|
        +---+---+---+---+---+---+---+---+---+
  (8) 3 | 0 | 1 | 5 | 8 | 10| 13| 16| 18| 21|
        +---+---+---+---+---+---+---+---+---+
  (9) 4 | 0 | 1 | 5 | 8 | 10| 13| 16| 18| 21|
        +---+---+---+---+---+---+---+---+---+
 (10) 5 | 0 | 1 | 5 | 8 | 10| 13| 16| 18| 21|
        +---+---+---+---+---+---+---+---+---+
 (17) 6 | 0 | 1 | 5 | 8 | 10| 13| 17| 18| 22|
        +---+---+---+---+---+---+---+---+---+
 (17) 7 | 0 | 1 | 5 | 8 | 10| 13| 17| 18| 22|
        +---+---+---+---+---+---+---+---+---+
 (20) 8 | 0 | 1 | 5 | 8 | 10| 13| 17| 18| 22|
        +---+---+---+---+---+---+---+---+---+

Otrzymamy wynik w dp [n] [m + 1] .

Implementacja w Javie

public int getMaximumPrice(int price[],int n){
        int arr[][] = new int[n][price.length+1];
        
        for(int i=0;i<n;i++){
            for(int j=0;j<price.length+1;j++){
                if(j==0 || i==0)
                    arr[i][j] = 0;
                else if(j>=i){
                    arr[i][j] = Math.max(arr[i-1][j], price[i-1]+arr[i][j-i]);
                }else{
                    arr[i][j] = arr[i-1][j];
                }
            }
        }
        return arr[n-1][price.length];
    }

Złożoność czasu

O(n^2)


Modified text is an extract of the original Stack Overflow Documentation
Licencjonowany na podstawie CC BY-SA 3.0
Nie związany z Stack Overflow