apache-spark
Operaciones con estado en Spark Streaming
Buscar..
PairDStreamFunctions.updateStateByKey
updateState
by key se puede usar para crear un DStream
estado basado en los próximos datos. Requiere una función:
object UpdateStateFunctions {
def updateState(current: Seq[Double], previous: Option[StatCounter]) = {
previous.map(s => s.merge(current)).orElse(Some(StatCounter(current)))
}
}
que toma una secuencia de los valores current
, una Option
del estado anterior y devuelve una Option
del estado actualizado. Poniendo todo esto junto:
import org.apache.spark._
import org.apache.spark.streaming.dstream.DStream
import scala.collection.mutable.Queue
import org.apache.spark.util.StatCounter
import org.apache.spark.streaming._
object UpdateStateByKeyApp {
def main(args: Array[String]) {
val sc = new SparkContext("local", "updateStateByKey", new SparkConf())
val ssc = new StreamingContext(sc, Seconds(10))
ssc.checkpoint("/tmp/chk")
val queue = Queue(
sc.parallelize(Seq(("foo", 5.0), ("bar", 1.0))),
sc.parallelize(Seq(("foo", 1.0), ("foo", 99.0))),
sc.parallelize(Seq(("bar", 22.0), ("foo", 1.0))),
sc.emptyRDD[(String, Double)],
sc.emptyRDD[(String, Double)],
sc.emptyRDD[(String, Double)],
sc.parallelize(Seq(("foo", 1.0), ("bar", 1.0)))
)
val inputStream: DStream[(String, Double)] = ssc.queueStream(queue)
inputStream.updateStateByKey(UpdateStateFunctions.updateState _).print()
ssc.start()
ssc.awaitTermination()
ssc.stop()
}
}
PairDStreamFunctions.mapWithState
mapWithState
, al igual que updateState
, se puede usar para crear un DStream con estado basado en los próximos datos. Requiere StateSpec
:
import org.apache.spark.streaming._
object StatefulStats {
val state = StateSpec.function(
(key: String, current: Option[Double], state: State[StatCounter]) => {
(current, state.getOption) match {
case (Some(x), Some(cnt)) => state.update(cnt.merge(x))
case (Some(x), None) => state.update(StatCounter(x))
case (None, None) => state.update(StatCounter())
case _ =>
}
(key, state.get)
}
)
}
que toma clave key
, value
actual y State
acumulado y devuelve nuevo estado. Poniendo todo esto junto:
import org.apache.spark._
import org.apache.spark.streaming.dstream.DStream
import scala.collection.mutable.Queue
import org.apache.spark.util.StatCounter
object MapStateByKeyApp {
def main(args: Array[String]) {
val sc = new SparkContext("local", "mapWithState", new SparkConf())
val ssc = new StreamingContext(sc, Seconds(10))
ssc.checkpoint("/tmp/chk")
val queue = Queue(
sc.parallelize(Seq(("foo", 5.0), ("bar", 1.0))),
sc.parallelize(Seq(("foo", 1.0), ("foo", 99.0))),
sc.parallelize(Seq(("bar", 22.0), ("foo", 1.0))),
sc.emptyRDD[(String, Double)],
sc.parallelize(Seq(("foo", 1.0), ("bar", 1.0)))
)
val inputStream: DStream[(String, Double)] = ssc.queueStream(queue)
inputStream.mapWithState(StatefulStats.state).print()
ssc.start()
ssc.awaitTermination()
ssc.stop()
}
}
Finalmente se espera la salida:
-------------------------------------------
Time: 1469923280000 ms
-------------------------------------------
(foo,(count: 1, mean: 5.000000, stdev: 0.000000, max: 5.000000, min: 5.000000))
(bar,(count: 1, mean: 1.000000, stdev: 0.000000, max: 1.000000, min: 1.000000))
-------------------------------------------
Time: 1469923290000 ms
-------------------------------------------
(foo,(count: 3, mean: 35.000000, stdev: 45.284287, max: 99.000000, min: 1.000000))
(foo,(count: 3, mean: 35.000000, stdev: 45.284287, max: 99.000000, min: 1.000000))
-------------------------------------------
Time: 1469923300000 ms
-------------------------------------------
(bar,(count: 2, mean: 11.500000, stdev: 10.500000, max: 22.000000, min: 1.000000))
(foo,(count: 4, mean: 26.500000, stdev: 41.889736, max: 99.000000, min: 1.000000))
-------------------------------------------
Time: 1469923310000 ms
-------------------------------------------
-------------------------------------------
Time: 1469923320000 ms
-------------------------------------------
(foo,(count: 5, mean: 21.400000, stdev: 38.830916, max: 99.000000, min: 1.000000))
(bar,(count: 3, mean: 8.000000, stdev: 9.899495, max: 22.000000, min: 1.000000))
Modified text is an extract of the original Stack Overflow Documentation
Licenciado bajo CC BY-SA 3.0
No afiliado a Stack Overflow