tensorflow
Korzystanie z normalizacji partii
Szukaj…
Parametry
contrib.layers.batch_norm params | Uwagi |
---|---|
beta | typ bool python. Określa, czy wyśrodkować parametr moving_mean i moving_variance |
------ | ------ |
gamma | typ bool python. Określa, czy skalować moving_mean i moving_variance |
------ | ------ |
is_training | Akceptuje Python bool lub TensorFlow tf.palceholder(tf.bool) |
------ | ------ |
decay | Ustawieniem domyślnym jest decay=0.999 . Mniejsza wartość (tj. decay=0.9 ) jest lepsza w przypadku mniejszego zestawu danych i / lub mniejszej liczby kroków szkoleniowych. |
Uwagi
Oto zrzut ekranu z powyższego przykładu roboczego.
Kod i wersję tego przykładowego notesu jupyter można znaleźć w repozytorium autora
Pełny przykład roboczy 2-warstwowej sieci neuronowej z normalizacją wsadową (zestaw danych MNIST)
Importuj biblioteki (zależność językowa: python 2.7)
import tensorflow as tf
import numpy as np
from sklearn.datasets import fetch_mldata
from sklearn.model_selection import train_test_split
ładować dane, przygotowywać dane
mnist = fetch_mldata('MNIST original', data_home='./')
print "MNIST data, X shape\t", mnist.data.shape
print "MNIST data, y shape\t", mnist.target.shape
print mnist.data.dtype
print mnist.target.dtype
mnist_X = mnist.data.astype(np.float32)
mnist_y = mnist.target.astype(np.float32)
print mnist_X.dtype
print mnist_y.dtype
One-Hot-Encode y
num_classes = 10
mnist_y = np.arange(num_classes)==mnist_y[:, None]
mnist_y = mnist_y.astype(np.float32)
print mnist_y.shape
Podzielone szkolenie, walidacja, testowanie danych
train_X, valid_X, train_y, valid_y = train_test_split(mnist_X, mnist_y, test_size=10000,\
random_state=102, stratify=mnist.target)
train_X, test_X, train_y, test_y = train_test_split(train_X, train_y, test_size=10000,\
random_state=325, stratify=train_y)
print 'Dataset\t\tFeatureShape\tLabelShape'
print 'Training set:\t', train_X.shape,'\t', train_y.shape
print 'Validation set:\t', valid_X.shape,'\t', valid_y.shape
print 'Testing set:\t', test_X.shape, '\t', test_y.shape
Zbuduj prosty 2-warstwowy wykres sieci neuronowej
num_features = train_X.shape[1]
batch_size = 64
hidden_layer_size = 1024
Funkcja inicjalizacji
def initialize(scope, shape, wt_initializer, center=True, scale=True):
with tf.variable_scope(scope, reuse=None) as sp:
wt = tf.get_variable("weights", shape, initializer=wt_initializer)
bi = tf.get_variable("biases", shape[-1], initializer=tf.constant_initializer(1.))
if center:
beta = tf.get_variable("beta", shape[-1], initializer=tf.constant_initializer(0.0))
if scale:
gamma = tf.get_variable("gamma", shape[-1], initializer=tf.constant_initializer(1.0))
moving_avg = tf.get_variable("moving_mean", shape[-1], initializer=tf.constant_initializer(0.0), \
trainable=False)
moving_var = tf.get_variable("moving_variance", shape[-1], initializer=tf.constant_initializer(1.0), \
trainable=False)
sp.reuse_variables()
Utwórz wykres
init_lr = 0.001
graph = tf.Graph()
with graph.as_default():
# prepare input tensor
tf_train_X = tf.placeholder(tf.float32, shape=[batch_size, num_features])
tf_train_y = tf.placeholder(tf.float32, shape=[batch_size, num_classes])
tf_valid_X, tf_valid_y = tf.constant(valid_X), tf.constant(valid_y)
tf_test_X, tf_test_y = tf.constant(test_X), tf.constant(test_y)
# setup layers
layers = [{'scope':'hidden_layer', 'shape':[num_features, hidden_layer_size],
'initializer':tf.truncated_normal_initializer(stddev=0.01)},
{'scope':'output_layer', 'shape':[hidden_layer_size, num_classes],
'initializer':tf.truncated_normal_initializer(stddev=0.01)}]
# initialize layers
for layer in layers:
initialize(layer['scope'], layer['shape'], layer['initializer'])
# build model - for each layer: -> X -> X*wt+bi -> batch_norm -> activation -> dropout (if not output layer) ->
layer_scopes = [layer['scope'] for layer in layers]
def model(X, layer_scopes, is_training, keep_prob, decay=0.9):
output_X = X
for scope in layer_scopes:
# X*wt+bi
with tf.variable_scope(scope, reuse=True):
wt = tf.get_variable("weights")
bi = tf.get_variable("biases")
output_X = tf.matmul(output_X, wt) + bi
# Insert Batch Normalization
# set `updates_collections=None` to force updates in place however it comes with speed penalty
output_X = tf.contrib.layers.batch_norm(output_X, decay=decay, is_training=is_training,
updates_collections=ops.GraphKeys.UPDATE_OPS, scope=scope, reuse=True)
# ReLu activation
output_X = tf.nn.relu(output_X)
# Dropout for all non-output layers
if scope!=layer_scopes[-1]:
output_X = tf.nn.dropout(output_X, keep_prob)
return output_X
# setup keep_prob
keep_prob = tf.placeholder(tf.float32)
# compute loss, make predictions
train_logits = model(tf_train_X, layer_scopes, True, keep_prob)
train_loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(train_logits, tf_train_y))
train_pred = tf.nn.softmax(train_logits)
valid_logits = model(tf_valid_X, layer_scopes, False, keep_prob)
valid_pred = tf.nn.softmax(valid_logits)
test_logits = model(tf_test_X, layer_scopes, False, keep_prob)
test_pred = tf.nn.softmax(test_logits)
# compute accuracy
def compute_accuracy(predictions, labels):
correct_predictions = tf.equal(tf.argmax(predictions, 1), tf.argmax(labels, 1))
accuracy = tf.reduce_mean(tf.cast(correct_predictions, tf.float32))
return accuracy
train_accuracy = compute_accuracy(train_pred, tf_train_y)
valid_accuracy = compute_accuracy(valid_pred, tf_valid_y)
test_accuracy = compute_accuracy(test_pred , tf_test_y)
# setup learning rate, optimizer
global_step = tf.Variable(0)
learning_rate = tf.train.exponential_decay(init_lr,global_step, decay_steps=500, decay_rate=0.95, staircase=True)
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(train_loss, global_step=global_step)
Rozpocznij sesję
num_steps = 1000
with tf.Session(graph=graph) as sess:
tf.initialize_all_variables().run()
print('Initialized')
for step in range(num_steps):
offset = (step * batch_size) % (train_y.shape[0] - batch_size)
batch_X = train_X[offset:(offset+batch_size), :]
batch_y = train_y[offset:(offset+batch_size), :]
feed_dict = {tf_train_X : batch_X, tf_train_y : batch_y, keep_prob : 0.6}
_, tloss, tacc = sess.run([optimizer, train_loss, train_accuracy], feed_dict=feed_dict)
if step%50==0:
# only evaluate validation accuracy every 50 steps to speed up training
vacc = sess.run(valid_accuracy, feed_dict={keep_prob : 1.0})
print('Epoch: %d:\tLoss: %f\t\tTrain Acc: %.2f%%\tValid Acc: %2.f%%\tLearning rate: %.6f' \
%(step, tloss, (tacc*100), (vacc*100), learning_rate.eval()))
print("Finished training")
tacc = sess.run([test_accuracy], feed_dict={keep_prob : 1.0})
print("Test accuracy: %4f%%" %(tacc*100))
Modified text is an extract of the original Stack Overflow Documentation
Licencjonowany na podstawie CC BY-SA 3.0
Nie związany z Stack Overflow