cryptography
Szyfr Cezara
Szukaj…
Wprowadzenie
Jest to klasyczny monoalfabetyczny szyfr z prostym przesunięciem, w którym każda litera jest zastępowana pozycją litery 3 (rzeczywisty szyfr Cezara) z przodu za pomocą kolistego porządku alfabetycznego, tj. Litera po Z jest A. Więc kiedy kodujemy HELLO WORLD, tekst zaszyfrowany staje się KHOORZRUOG.
Wprowadzenie
Szyfr Cezara to klasyczna metoda szyfrowania. Działa poprzez przesunięcie znaków o określoną wartość. Na przykład, jeśli wybierzemy przesunięcie o 3, A zmieni się w D, a E w H.
Poniższy tekst został zaszyfrowany przy użyciu zmiany 23.
THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG
QEB NRFZH YOLTK CLU GRJMP LSBO QEB IXWV ALD
Implementacja języka Python
Sposób ASCII
To zmienia postacie, ale nie przejmuje się tym, że nowa postać nie jest literą. Jest to dobre, jeśli chcesz używać znaków interpunkcyjnych lub specjalnych, ale niekoniecznie daje to litery tylko jako wynik. Na przykład „z” 3-shift do „}”.
def ceasar(text, shift):
output = ""
for c in text:
output += chr(ord(c) + shift)
return output
ROT13
ROT13 to specjalny przypadek szyfru Cezara, z przesunięciem o 13 stopni. Zmienia się tylko litery, a białe znaki i znaki specjalne pozostają bez zmian.
Interesujące jest to, że ROT13 jest wzajemnym szyfrem: dwukrotne zastosowanie ROT13 da początkowe dane wejściowe. Rzeczywiście, 2 * 13 = 26, liczba liter w alfabecie.
Ponieważ ROT13 nie ma klucza jako parametru wejściowego, często postrzegany jest raczej jako algorytm kodowania , a dokładniej algorytm zaciemniania, a nie szyfr.
ROT13 po prostu utrudnia bezpośrednie czytanie wiadomości i dlatego jest często używany do obraźliwych wiadomości lub żartów. Nie zapewnia żadnych zabezpieczeń obliczeniowych.
Implementacja Java dla Caesar Cipher
Wdrożenie szyfru Cezara.
- Ta implementacja wykonuje operację przesunięcia tylko na wielkich i małych alfabetach i zachowuje pozostałe znaki (takie jak spacja w obecnej postaci).
- Szyfr Cezara nie jest bezpieczny zgodnie z obowiązującymi standardami.
- Poniższy przykład służy wyłącznie celom poglądowym!
- Odniesienie: [ https://en.wikipedia.org/wiki/Caesar_cipher](https://en.wikipedia.org/wiki/Caesar_cipher)
package com.example.so.cipher;
/**
* Implementation of the Caesar cipher.
* <p>
* <ul>
* <li>This implementation performs the shift operation only on upper and lower
* case alphabets and retains the other characters (such as space as-is).</li>
* <li>The Caesar cipher is not secure as per current standards.</li>
* <li>Below example is for illustrative purposes only !</li>
* <li>Reference: https://en.wikipedia.org/wiki/Caesar_cipher</li>
* </ul>
* </p>
*
* @author Ravindra HV
* @author Maarten Bodewes (beautification only)
* @since 2016-11-21
* @version 0.3
*
*/
public class CaesarCipher {
public static final char START_LOWER_CASE_ALPHABET = 'a'; // ASCII-97
public static final char END_LOWER_CASE_ALPHABET = 'z'; // ASCII-122
public static final char START_UPPER_CASE_ALPHABET = 'A'; // ASCII-65
public static final char END_UPPER_CASE_ALPHABET = 'Z'; // ASCII-90
public static final int ALPHABET_SIZE = 'Z' - 'A' + 1; // 26 of course
/**
* Performs a single encrypt followed by a single decrypt of the Caesar
* cipher, prints out the intermediate values and finally validates
* that the decrypted plaintext is identical to the original plaintext.
*
* <p>
* This method outputs the following:
*
* <pre>
* Plaintext : The quick brown fox jumps over the lazy dog
* Ciphertext : Qeb nrfzh yoltk clu grjmp lsbo qeb ixwv ald
* Decrypted : The quick brown fox jumps over the lazy dog
* Successful decryption: true
* </pre>
* </p>
*
* @param args (ignored)
*/
public static void main(String[] args) {
int shift = 23;
String plainText = "The quick brown fox jumps over the lazy dog";
System.out.println("Plaintext : " + plainText);
String ciphertext = caesarCipherEncrypt(plainText, shift);
System.out.println("Ciphertext : " + ciphertext);
String decrypted = caesarCipherDecrypt(ciphertext, shift);
System.out.println("Decrypted : " + decrypted);
System.out.println("Successful decryption: "
+ decrypted.equals(plainText));
}
public static String caesarCipherEncrypt(String plaintext, int shift) {
return caesarCipher(plaintext, shift, true);
}
public static String caesarCipherDecrypt(String ciphertext, int shift) {
return caesarCipher(ciphertext, shift, false);
}
private static String caesarCipher(
String input, int shift, boolean encrypt) {
// create an output buffer of the same size as the input
StringBuilder output = new StringBuilder(input.length());
for (int i = 0; i < input.length(); i++) {
// get the next character
char inputChar = input.charAt(i);
// calculate the shift depending on whether to encrypt or decrypt
int calculatedShift = (encrypt) ? shift : (ALPHABET_SIZE - shift);
char startOfAlphabet;
if ((inputChar >= START_LOWER_CASE_ALPHABET)
&& (inputChar <= END_LOWER_CASE_ALPHABET)) {
// process lower case
startOfAlphabet = START_LOWER_CASE_ALPHABET;
} else if ((inputChar >= START_UPPER_CASE_ALPHABET)
&& (inputChar <= END_UPPER_CASE_ALPHABET)) {
// process upper case
startOfAlphabet = START_UPPER_CASE_ALPHABET;
} else {
// retain all other characters
output.append(inputChar);
// and continue with the next character
continue;
}
// index the input character in the alphabet with 0 as base
int inputCharIndex =
inputChar - startOfAlphabet;
// cipher / decipher operation (rotation uses remainder operation)
int outputCharIndex =
(inputCharIndex + calculatedShift) % ALPHABET_SIZE;
// convert the new index in the alphabet to an output character
char outputChar =
(char) (outputCharIndex + startOfAlphabet);
// add character to temporary-storage
output.append(outputChar);
}
return output.toString();
}
}
Wyjście programu:
Plaintext : The quick brown fox jumps over the lazy dog
Ciphertext : Qeb nrfzh yoltk clu grjmp lsbo qeb ixwv ald
Decrypted : The quick brown fox jumps over the lazy dog
Successful decryption: true
Implementacja języka Python
Poniższy przykład kodu implementuje szyfr Cezara i pokazuje właściwości szyfru.
Obsługuje zarówno wielkie, jak i małe litery alfanumeryczne, pozostawiając wszystkie inne znaki bez zmian.
Pokazane są następujące właściwości szyfru Cezara:
- słabe klucze;
- mało miejsca na klawisz;
- fakt, że każdy klucz ma klucz wzajemny (odwrotny);
- związek z ROT13;
pokazuje także następujące - bardziej ogólne - pojęcia kryptograficzne:
- słabe klucze;
- różnica między zaciemnianiem (bez klucza) a szyfrowaniem;
- brutalne zmuszanie do klucza;
- brak integralności tekstu zaszyfrowanego.
def caesarEncrypt(plaintext, shift):
return caesarCipher(True, plaintext, shift)
def caesarDecrypt(ciphertext, shift):
return caesarCipher(False, ciphertext, shift)
def caesarCipher(encrypt, text, shift):
if not shift in range(0, 25):
raise Exception('Key value out of range')
output = ""
for c in text:
# only encrypt alphanumerical characters
if c.isalpha():
# we want to shift both upper- and lowercase characters
ci = ord('A') if c.isupper() else ord('a')
# if not encrypting, we're decrypting
if encrypt:
output += caesarEncryptCharacter(c, ci, shift)
else:
output += caesarDecryptCharacter(c, ci, shift)
else:
# leave other characters such as digits and spaces
output += c
return output
def caesarEncryptCharacter(plaintextCharacter, positionOfAlphabet, shift):
# convert character to the (zero-based) index in the alphabet
n = ord(plaintextCharacter) - positionOfAlphabet
# perform the >positive< modular shift operation on the index
# this always returns a value within the range [0, 25]
# (note that 26 is the size of the western alphabet)
x = (n + shift) % 26 # <- the magic happens here
# convert the index back into a character
ctc = chr(x + positionOfAlphabet)
# return the result
return ctc
def caesarDecryptCharacter(plaintextCharacter, positionOfAlphabet, shift):
# convert character to the (zero-based) index in the alphabet
n = ord(plaintextCharacter) - positionOfAlphabet
# perform the >negative< modular shift operation on the index
x = (n - shift) % 26
# convert the index back into a character
ctc = chr(x + positionOfAlphabet)
# return the result
return ctc
def encryptDecrypt():
print '--- Run normal encryption / decryption'
plaintext = 'Hello world!'
key = 3 # the original value for the Caesar cipher
ciphertext = caesarEncrypt(plaintext, key)
print ciphertext
decryptedPlaintext = caesarDecrypt(ciphertext, key)
print decryptedPlaintext
encryptDecrypt()
print '=== Now lets show some cryptographic properties of the Caesar cipher'
def withWeakKey():
print '--- Encrypting plaintext with a weak key is not a good idea'
plaintext = 'Hello world!'
# This is the weakest key of all, it does nothing
weakKey = 0
ciphertext = caesarEncrypt(plaintext, weakKey)
print ciphertext # just prints out the plaintext
withWeakKey();
def withoutDecrypt():
print '--- Do we actually need caesarDecrypt at all?'
plaintext = 'Hello world!'
key = 3 # the original value for the Caesar cipher
ciphertext = caesarEncrypt(plaintext, key)
print ciphertext
decryptionKey = 26 - key; # reciprocal value
decryptedPlaintext = caesarEncrypt(ciphertext, decryptionKey)
print decryptedPlaintext # performed decryption
withoutDecrypt()
def punnify():
print '--- ROT 13 is the Caesar cipher with a given, reciprocal, weak key: 13'
# The key is weak because double encryption will return the plaintext
def rot13(pun):
return caesarEncrypt(pun, 13)
print 'Q: How many marketing people does it take to change a light bulb?'
obfuscated = 'N: V jvyy unir gb trg onpx gb lbh ba gung.'
print obfuscated
deobfuscated = rot13(obfuscated)
print deobfuscated
# We should not leak the pun, right? Lets obfuscate afterwards!
obfuscatedAgain = rot13(deobfuscated)
print obfuscatedAgain
punnify()
def bruteForceAndLength():
print '--- Brute forcing is very easy as there are only 25 keys in the range [1..25]'
# Note that AES-128 has 340,282,366,920,938,463,463,374,607,431,768,211,456 keys
# and is therefore impossible to bruteforce (if the key is correctly generated)
key = 10;
plaintextToFind = 'Hello Maarten!'
ciphertextToBruteForce = caesarEncrypt(plaintextToFind, key)
for candidateKey in range(1, 25):
bruteForcedPlaintext = caesarDecrypt(ciphertextToBruteForce, candidateKey)
# lets assume the adversary knows 'Hello', but not the name
if bruteForcedPlaintext.startswith('Hello'):
print 'key value: ' + str(candidateKey) + ' gives : ' + bruteForcedPlaintext
print '--- Length of plaintext usually not hidden'
# Side channel attacks on ciphertext lengths are commonplace! Beware!
if len(ciphertextToBruteForce) != len('Hello Stefan!'):
print 'The name is not Stefan (but could be Stephan)'
bruteForceAndLength()
def manInTheMiddle():
print '--- Ciphers are vulnerable to man-in-the-middle attacks'
# Hint: do not directly use a cipher for transport security
moneyTransfer = 'Give Maarten one euro'
key = 1
print moneyTransfer
encryptedMoneyTransfer = caesarEncrypt(moneyTransfer, key)
print encryptedMoneyTransfer
# Man in the middle replaces third word with educated guess
# (or tries different ciphertexts until success)
encryptedMoneyTransferWords = encryptedMoneyTransfer.split(' ');
encryptedMoneyTransferWords[2] = 'ufo' # unidentified financial object
modifiedEncryptedMoneyTransfer = ' '.join(encryptedMoneyTransferWords)
print modifiedEncryptedMoneyTransfer
decryptedMoneyTransfer = caesarDecrypt(modifiedEncryptedMoneyTransfer, key)
print decryptedMoneyTransfer
manInTheMiddle()