Zoeken…
Punten zoeken langs een kubieke Bezier-curve
In dit voorbeeld wordt een reeks ongeveer gelijkmatig verdeelde punten langs een kubieke Bezier-curve gevonden.
Het splitst padensegmenten gemaakt met context.bezierCurveTo
in punten langs die curve.
// Return: an array of approximately evenly spaced points along a cubic Bezier curve
//
// Attribution: Stackoverflow's @Blindman67
// Cite: http://stackoverflow.com/questions/36637211/drawing-a-curved-line-in-css-or-canvas-and-moving-circle-along-it/36827074#36827074
// As modified from the above citation
//
// ptCount: sample this many points at interval along the curve
// pxTolerance: approximate spacing allowed between points
// Ax,Ay,Bx,By,Cx,Cy,Dx,Dy: control points defining the curve
//
function plotCBez(ptCount,pxTolerance,Ax,Ay,Bx,By,Cx,Cy,Dx,Dy){
var deltaBAx=Bx-Ax;
var deltaCBx=Cx-Bx;
var deltaDCx=Dx-Cx;
var deltaBAy=By-Ay;
var deltaCBy=Cy-By;
var deltaDCy=Dy-Cy;
var ax,ay,bx,by;
var lastX=-10000;
var lastY=-10000;
var pts=[{x:Ax,y:Ay}];
for(var i=1;i<ptCount;i++){
var t=i/ptCount;
ax=Ax+deltaBAx*t;
bx=Bx+deltaCBx*t;
cx=Cx+deltaDCx*t;
ax+=(bx-ax)*t;
bx+=(cx-bx)*t;
//
ay=Ay+deltaBAy*t;
by=By+deltaCBy*t;
cy=Cy+deltaDCy*t;
ay+=(by-ay)*t;
by+=(cy-by)*t;
var x=ax+(bx-ax)*t;
var y=ay+(by-ay)*t;
var dx=x-lastX;
var dy=y-lastY;
if(dx*dx+dy*dy>pxTolerance){
pts.push({x:x,y:y});
lastX=x;
lastY=y;
}
}
pts.push({x:Dx,y:Dy});
return(pts);
}
Punten zoeken volgens een kwadratische curve
Dit voorbeeld vindt een reeks van ongeveer gelijkmatig verdeelde punten langs een kwadratische curve.
Het ontbindt padensegmenten die zijn gemaakt met context.quadraticCurveTo
in punten langs die curve.
// Return: an array of approximately evenly spaced points along a Quadratic curve
//
// Attribution: Stackoverflow's @Blindman67
// Cite: http://stackoverflow.com/questions/36637211/drawing-a-curved-line-in-css-or-canvas-and-moving-circle-along-it/36827074#36827074
// As modified from the above citation
//
// ptCount: sample this many points at interval along the curve
// pxTolerance: approximate spacing allowed between points
// Ax,Ay,Bx,By,Cx,Cy: control points defining the curve
//
function plotQBez(ptCount,pxTolerance,Ax,Ay,Bx,By,Cx,Cy){
var deltaBAx=Bx-Ax;
var deltaCBx=Cx-Bx;
var deltaBAy=By-Ay;
var deltaCBy=Cy-By;
var ax,ay;
var lastX=-10000;
var lastY=-10000;
var pts=[{x:Ax,y:Ay}];
for(var i=1;i<ptCount;i++){
var t=i/ptCount;
ax=Ax+deltaBAx*t;
ay=Ay+deltaBAy*t;
var x=ax+((Bx+deltaCBx*t)-ax)*t;
var y=ay+((By+deltaCBy*t)-ay)*t;
var dx=x-lastX;
var dy=y-lastY;
if(dx*dx+dy*dy>pxTolerance){
pts.push({x:x,y:y});
lastX=x;
lastY=y;
}
}
pts.push({x:Cx,y:Cy});
return(pts);
}
Punten zoeken langs een lijn
In dit voorbeeld wordt een reeks ongeveer gelijkmatig verdeelde punten langs een lijn gevonden.
Het splitst padensegmenten gemaakt met context.lineTo
in punten langs die lijn.
// Return: an array of approximately evenly spaced points along a line
//
// pxTolerance: approximate spacing allowed between points
// Ax,Ay,Bx,By: end points defining the line
//
function plotLine(pxTolerance,Ax,Ay,Bx,By){
var dx=Bx-Ax;
var dy=By-Ay;
var ptCount=parseInt(Math.sqrt(dx*dx+dy*dy))*3;
var lastX=-10000;
var lastY=-10000;
var pts=[{x:Ax,y:Ay}];
for(var i=1;i<=ptCount;i++){
var t=i/ptCount;
var x=Ax+dx*t;
var y=Ay+dy*t;
var dx1=x-lastX;
var dy1=y-lastY;
if(dx1*dx1+dy1*dy1>pxTolerance){
pts.push({x:x,y:y});
lastX=x;
lastY=y;
}
}
pts.push({x:Bx,y:By});
return(pts);
}
Punten zoeken langs een volledig pad met curven en lijnen
In dit voorbeeld wordt een reeks ongeveer gelijkmatig verdeelde punten langs een volledig pad gevonden.
Het ontleedt alle padsegmenten die zijn gemaakt met context.lineTo
, context.quadraticCurveTo
en / of context.bezierCurveTo
in punten langs dat pad.
Gebruik
// Path related variables
var A={x:50,y:100};
var B={x:125,y:25};
var BB={x:150,y:15};
var BB2={x:150,y:185};
var C={x:175,y:200};
var D={x:300,y:150};
var n=1000;
var tolerance=1.5;
var pts;
// canvas related variables
var canvas=document.createElement("canvas");
var ctx=canvas.getContext("2d");
document.body.appendChild(canvas);
canvas.width=378;
canvas.height=256;
// Tell the Context to plot waypoint in addition to
// drawing the path
plotPathCommands(ctx,n,tolerance);
// Path drawing commands
ctx.beginPath();
ctx.moveTo(A.x,A.y);
ctx.bezierCurveTo(B.x,B.y,C.x,C.y,D.x,D.y);
ctx.quadraticCurveTo(BB.x,BB.y,A.x,A.y);
ctx.lineTo(D.x,D.y);
ctx.strokeStyle='gray';
ctx.stroke();
// Tell the Context to stop plotting waypoints
ctx.stopPlottingPathCommands();
// Demo: Incrementally draw the path using the plotted points
ptsToRects(ctx.getPathPoints());
function ptsToRects(pts){
ctx.fillStyle='red';
var i=0;
requestAnimationFrame(animate);
function animate(){
ctx.fillRect(pts[i].x-0.50,pts[i].y-0.50,tolerance,tolerance);
i++;
if(i<pts.length){ requestAnimationFrame(animate); }
}
}
Een plug-in die automatisch punten langs het pad berekent
Deze code wijzigt de tekenopdrachten van deze Canvas Context zodat de opdrachten niet alleen de lijn of curve tekenen, maar ook een reeks punten langs het hele pad maken:
- beginPath,
- moveTo,
- lineTo,
- quadraticCurveTo,
- bezierCurveTo.
Belangrijke notitie!
Deze code wijzigt de werkelijke tekenfuncties van de context, dus als u klaar bent met het plotten van punten langs het pad, moet u de meegeleverde stopPlottingPathCommands
om de stopPlottingPathCommands
van de context terug te brengen naar hun ongewijzigde status.
Het doel van deze gewijzigde context is om u toe te staan de puntenarrayberekening in te pluggen in uw bestaande code zonder uw bestaande padtekeningopdrachten te moeten wijzigen. Maar u hoeft deze gewijzigde context niet te gebruiken - u kunt de afzonderlijke functies die een lijn ontleden, een kwadratische curve en een kubieke Bezier-curve afzonderlijk oproepen en vervolgens die afzonderlijke puntmatrices handmatig samenvoegen tot een enkele puntmatrix voor het hele pad.
U haalt een kopie van de resulterende punten-array op met de meegeleverde functie getPathPoints
.
Als u meerdere paden tekent met de gewijzigde context, bevat de puntenarray een enkele aaneengesloten reeks punten voor alle getekende meerdere paden.
Als u in plaats daarvan afzonderlijke punten-arrays wilt krijgen, kunt u de huidige array ophalen met getPathPoints
en die punten vervolgens uit de array wissen met de meegeleverde clearPathPoints
functie.
// Modify the Canvas' Context to calculate a set of approximately
// evenly spaced waypoints as it draws path(s).
function plotPathCommands(ctx,sampleCount,pointSpacing){
ctx.mySampleCount=sampleCount;
ctx.myPointSpacing=pointSpacing;
ctx.myTolerance=pointSpacing*pointSpacing;
ctx.myBeginPath=ctx.beginPath;
ctx.myMoveTo=ctx.moveTo;
ctx.myLineTo=ctx.lineTo;
ctx.myQuadraticCurveTo=ctx.quadraticCurveTo;
ctx.myBezierCurveTo=ctx.bezierCurveTo;
// don't use myPathPoints[] directly -- use "ctx.getPathPoints"
ctx.myPathPoints=[];
ctx.beginPath=function(){
this.myLastX=0;
this.myLastY=0;
this.myBeginPath();
}
ctx.moveTo=function(x,y){
this.myLastX=x;
this.myLastY=y;
this.myMoveTo(x,y);
}
ctx.lineTo=function(x,y){
var pts=plotLine(this.myTolerance,this.myLastX,this.myLastY,x,y);
Array.prototype.push.apply(this.myPathPoints,pts);
this.myLastX=x;
this.myLastY=y;
this.myLineTo(x,y);
}
ctx.quadraticCurveTo=function(x0,y0,x1,y1){
var pts=plotQBez(this.mySampleCount,this.myTolerance,this.myLastX,this.myLastY,x0,y0,x1,y1);
Array.prototype.push.apply(this.myPathPoints,pts);
this.myLastX=x1;
this.myLastY=y1;
this.myQuadraticCurveTo(x0,y0,x1,y1);
}
ctx.bezierCurveTo=function(x0,y0,x1,y1,x2,y2){
var pts=plotCBez(this.mySampleCount,this.myTolerance,this.myLastX,this.myLastY,x0,y0,x1,y1,x2,y2);
Array.prototype.push.apply(this.myPathPoints,pts);
this.myLastX=x2;
this.myLastY=y2;
this.myBezierCurveTo(x0,y0,x1,y1,x2,y2);
}
ctx.getPathPoints=function(){
return(this.myPathPoints.slice());
}
ctx.clearPathPoints=function(){
this.myPathPoints.length=0;
}
ctx.stopPlottingPathCommands=function(){
if(!this.myBeginPath){return;}
this.beginPath=this.myBeginPath;
this.moveTo=this.myMoveTo;
this.lineTo=this.myLineTo;
this.quadraticCurveto=this.myQuadraticCurveTo;
this.bezierCurveTo=this.myBezierCurveTo;
this.myBeginPath=undefined;
}
}
Een complete demo:
// Path related variables
var A={x:50,y:100};
var B={x:125,y:25};
var BB={x:150,y:15};
var BB2={x:150,y:185};
var C={x:175,y:200};
var D={x:300,y:150};
var n=1000;
var tolerance=1.5;
var pts;
// canvas related variables
var canvas=document.createElement("canvas");
var ctx=canvas.getContext("2d");
document.body.appendChild(canvas);
canvas.width=378;
canvas.height=256;
// Tell the Context to plot waypoint in addition to
// drawing the path
plotPathCommands(ctx,n,tolerance);
// Path drawing commands
ctx.beginPath();
ctx.moveTo(A.x,A.y);
ctx.bezierCurveTo(B.x,B.y,C.x,C.y,D.x,D.y);
ctx.quadraticCurveTo(BB.x,BB.y,A.x,A.y);
ctx.lineTo(D.x,D.y);
ctx.strokeStyle='gray';
ctx.stroke();
// Tell the Context to stop plotting waypoints
ctx.stopPlottingPathCommands();
// Incrementally draw the path using the plotted points
ptsToRects(ctx.getPathPoints());
function ptsToRects(pts){
ctx.fillStyle='red';
var i=0;
requestAnimationFrame(animate);
function animate(){
ctx.fillRect(pts[i].x-0.50,pts[i].y-0.50,tolerance,tolerance);
i++;
if(i<pts.length){ requestAnimationFrame(animate); }
}
}
////////////////////////////////////////
// A Plug-in
////////////////////////////////////////
// Modify the Canvas' Context to calculate a set of approximately
// evenly spaced waypoints as it draws path(s).
function plotPathCommands(ctx,sampleCount,pointSpacing){
ctx.mySampleCount=sampleCount;
ctx.myPointSpacing=pointSpacing;
ctx.myTolerance=pointSpacing*pointSpacing;
ctx.myBeginPath=ctx.beginPath;
ctx.myMoveTo=ctx.moveTo;
ctx.myLineTo=ctx.lineTo;
ctx.myQuadraticCurveTo=ctx.quadraticCurveTo;
ctx.myBezierCurveTo=ctx.bezierCurveTo;
// don't use myPathPoints[] directly -- use "ctx.getPathPoints"
ctx.myPathPoints=[];
ctx.beginPath=function(){
this.myLastX=0;
this.myLastY=0;
this.myBeginPath();
}
ctx.moveTo=function(x,y){
this.myLastX=x;
this.myLastY=y;
this.myMoveTo(x,y);
}
ctx.lineTo=function(x,y){
var pts=plotLine(this.myTolerance,this.myLastX,this.myLastY,x,y);
Array.prototype.push.apply(this.myPathPoints,pts);
this.myLastX=x;
this.myLastY=y;
this.myLineTo(x,y);
}
ctx.quadraticCurveTo=function(x0,y0,x1,y1){
var pts=plotQBez(this.mySampleCount,this.myTolerance,this.myLastX,this.myLastY,x0,y0,x1,y1);
Array.prototype.push.apply(this.myPathPoints,pts);
this.myLastX=x1;
this.myLastY=y1;
this.myQuadraticCurveTo(x0,y0,x1,y1);
}
ctx.bezierCurveTo=function(x0,y0,x1,y1,x2,y2){
var pts=plotCBez(this.mySampleCount,this.myTolerance,this.myLastX,this.myLastY,x0,y0,x1,y1,x2,y2);
Array.prototype.push.apply(this.myPathPoints,pts);
this.myLastX=x2;
this.myLastY=y2;
this.myBezierCurveTo(x0,y0,x1,y1,x2,y2);
}
ctx.getPathPoints=function(){
return(this.myPathPoints.slice());
}
ctx.clearPathPoints=function(){
this.myPathPoints.length=0;
}
ctx.stopPlottingPathCommands=function(){
if(!this.myBeginPath){return;}
this.beginPath=this.myBeginPath;
this.moveTo=this.myMoveTo;
this.lineTo=this.myLineTo;
this.quadraticCurveto=this.myQuadraticCurveTo;
this.bezierCurveTo=this.myBezierCurveTo;
this.myBeginPath=undefined;
}
}
////////////////////////////////
// Helper functions
////////////////////////////////
// Return: a set of approximately evenly spaced points along a cubic Bezier curve
//
// Attribution: Stackoverflow's @Blindman67
// Cite: http://stackoverflow.com/questions/36637211/drawing-a-curved-line-in-css-or-canvas-and-moving-circle-along-it/36827074#36827074
// As modified from the above citation
//
// ptCount: sample this many points at interval along the curve
// pxTolerance: approximate spacing allowed between points
// Ax,Ay,Bx,By,Cx,Cy,Dx,Dy: control points defining the curve
//
function plotCBez(ptCount,pxTolerance,Ax,Ay,Bx,By,Cx,Cy,Dx,Dy){
var deltaBAx=Bx-Ax;
var deltaCBx=Cx-Bx;
var deltaDCx=Dx-Cx;
var deltaBAy=By-Ay;
var deltaCBy=Cy-By;
var deltaDCy=Dy-Cy;
var ax,ay,bx,by;
var lastX=-10000;
var lastY=-10000;
var pts=[{x:Ax,y:Ay}];
for(var i=1;i<ptCount;i++){
var t=i/ptCount;
ax=Ax+deltaBAx*t;
bx=Bx+deltaCBx*t;
cx=Cx+deltaDCx*t;
ax+=(bx-ax)*t;
bx+=(cx-bx)*t;
//
ay=Ay+deltaBAy*t;
by=By+deltaCBy*t;
cy=Cy+deltaDCy*t;
ay+=(by-ay)*t;
by+=(cy-by)*t;
var x=ax+(bx-ax)*t;
var y=ay+(by-ay)*t;
var dx=x-lastX;
var dy=y-lastY;
if(dx*dx+dy*dy>pxTolerance){
pts.push({x:x,y:y});
lastX=x;
lastY=y;
}
}
pts.push({x:Dx,y:Dy});
return(pts);
}
// Return: an array of approximately evenly spaced points along a Quadratic curve
//
// Attribution: Stackoverflow's @Blindman67
// Cite: http://stackoverflow.com/questions/36637211/drawing-a-curved-line-in-css-or-canvas-and-moving-circle-along-it/36827074#36827074
// As modified from the above citation
//
// ptCount: sample this many points at interval along the curve
// pxTolerance: approximate spacing allowed between points
// Ax,Ay,Bx,By,Cx,Cy: control points defining the curve
//
function plotQBez(ptCount,pxTolerance,Ax,Ay,Bx,By,Cx,Cy){
var deltaBAx=Bx-Ax;
var deltaCBx=Cx-Bx;
var deltaBAy=By-Ay;
var deltaCBy=Cy-By;
var ax,ay;
var lastX=-10000;
var lastY=-10000;
var pts=[{x:Ax,y:Ay}];
for(var i=1;i<ptCount;i++){
var t=i/ptCount;
ax=Ax+deltaBAx*t;
ay=Ay+deltaBAy*t;
var x=ax+((Bx+deltaCBx*t)-ax)*t;
var y=ay+((By+deltaCBy*t)-ay)*t;
var dx=x-lastX;
var dy=y-lastY;
if(dx*dx+dy*dy>pxTolerance){
pts.push({x:x,y:y});
lastX=x;
lastY=y;
}
}
pts.push({x:Cx,y:Cy});
return(pts);
}
// Return: an array of approximately evenly spaced points along a line
//
// pxTolerance: approximate spacing allowed between points
// Ax,Ay,Bx,By: end points defining the line
//
function plotLine(pxTolerance,Ax,Ay,Bx,By){
var dx=Bx-Ax;
var dy=By-Ay;
var ptCount=parseInt(Math.sqrt(dx*dx+dy*dy))*3;
var lastX=-10000;
var lastY=-10000;
var pts=[{x:Ax,y:Ay}];
for(var i=1;i<=ptCount;i++){
var t=i/ptCount;
var x=Ax+dx*t;
var y=Ay+dy*t;
var dx1=x-lastX;
var dy1=y-lastY;
if(dx1*dx1+dy1*dy1>pxTolerance){
pts.push({x:x,y:y});
lastX=x;
lastY=y;
}
}
pts.push({x:Bx,y:By});
return(pts);
}
Lengte van een kwadratische curve
Gegeven de 3 punten van een kwadratische curve geeft de volgende functie de lengte terug.
function quadraticBezierLength(x1,y1,x2,y2,x3,y3)
var a, e, c, d, u, a1, e1, c1, d1, u1, v1x, v1y;
v1x = x2 * 2;
v1y = y2 * 2;
d = x1 - v1x + x3;
d1 = y1 - v1y + y3;
e = v1x - 2 * x1;
e1 = v1y - 2 * y1;
c1 = (a = 4 * (d * d + d1 * d1));
c1 += (b = 4 * (d * e + d1 * e1));
c1 += (c = e * e + e1 * e1);
c1 = 2 * Math.sqrt(c1);
a1 = 2 * a * (u = Math.sqrt(a));
u1 = b / u;
a = 4 * c * a - b * b;
c = 2 * Math.sqrt(c);
return (a1 * c1 + u * b * (c1 - c) + a * Math.log((2 * u + u1 + c1) / (u1 + c))) / (4 * a1);
}
Afgeleid van de kwadratische bezierfunctie F (t) = a * (1 - t) 2 + 2 * b * (1 - t) * t + c * t 2
Gesplitste beziercurven op positie
In dit voorbeeld worden kubieke en beziercurven in twee gedeeld.
De functie splitCurveAt
splitst de curve op de position
waar 0.0
= start, 0.5
= midden en 1
= einde. Het kan kwadratische en kubieke krommen splitsen. Het curve-type wordt bepaald door het laatste x-argument x4
. Als het niet undefined
of null
is, neemt het aan dat de curve kubisch is, anders is de curve een kwadratisch
Voorbeeld gebruik
Vierkantige beziercurve in twee delen
var p1 = {x : 10 , y : 100};
var p2 = {x : 100, y : 200};
var p3 = {x : 200, y : 0};
var newCurves = splitCurveAt(0.5, p1.x, p1.y, p2.x, p2.y, p3.x, p3.y)
var i = 0;
var p = newCurves
// Draw the 2 new curves
// Assumes ctx is canvas 2d context
ctx.lineWidth = 1;
ctx.strokeStyle = "black";
ctx.beginPath();
ctx.moveTo(p[i++],p[i++]);
ctx.quadraticCurveTo(p[i++], p[i++], p[i++], p[i++]);
ctx.quadraticCurveTo(p[i++], p[i++], p[i++], p[i++]);
ctx.stroke();
Kubieke beziercurve in twee delen
var p1 = {x : 10 , y : 100};
var p2 = {x : 100, y : 200};
var p3 = {x : 200, y : 0};
var p4 = {x : 300, y : 100};
var newCurves = splitCurveAt(0.5, p1.x, p1.y, p2.x, p2.y, p3.x, p3.y, p4.x, p4.y)
var i = 0;
var p = newCurves
// Draw the 2 new curves
// Assumes ctx is canvas 2d context
ctx.lineWidth = 1;
ctx.strokeStyle = "black";
ctx.beginPath();
ctx.moveTo(p[i++],p[i++]);
ctx.bezierCurveTo(p[i++], p[i++], p[i++], p[i++], p[i++], p[i++]);
ctx.bezierCurveTo(p[i++], p[i++], p[i++], p[i++], p[i++], p[i++]);
ctx.stroke();
De split functie
splitCurveAt = functie (positie, x1, y1, x2, y2, x3, y3, [x4, y4])
Opmerking: argumenten binnen [x4, y4] zijn optioneel.
Opmerking: De functie heeft een optionele commentaar
/* */
code die randgevallen behandelt waarbij de resulterende krommen een lengte van nul kunnen hebben of buiten het begin of einde van de oorspronkelijke kromme kunnen vallen. Net als een poging om een curve buiten het geldige bereik voorposition >= 0
ofposition >= 1
te splitsen, geeft dit een bereikfout. Dit kan worden verwijderd en werkt prima, hoewel u mogelijk resulterende curven met een lengte van nul hebt.
// With throw RangeError if not 0 < position < 1
// x1, y1, x2, y2, x3, y3 for quadratic curves
// x1, y1, x2, y2, x3, y3, x4, y4 for cubic curves
// Returns an array of points representing 2 curves. The curves are the same type as the split curve
var splitCurveAt = function(position, x1, y1, x2, y2, x3, y3, x4, y4){
var v1, v2, v3, v4, quad, retPoints, i, c;
// =============================================================================================
// you may remove this as the function will still work and resulting curves will still render
// but other curve functions may not like curves with 0 length
// =============================================================================================
if(position <= 0 || position >= 1){
throw RangeError("spliteCurveAt requires position > 0 && position < 1");
}
// =============================================================================================
// If you remove the above range error you may use one or both of the following commented sections
// Splitting curves position < 0 or position > 1 will still create valid curves but they will
// extend past the end points
// =============================================================================================
// Lock the position to split on the curve.
/* optional A
position = position < 0 ? 0 : position > 1 ? 1 : position;
optional A end */
// =============================================================================================
// the next commented section will return the original curve if the split results in 0 length curve
// You may wish to uncomment this If you desire such functionality
/* optional B
if(position <= 0 || position >= 1){
if(x4 === undefined || x4 === null){
return [x1, y1, x2, y2, x3, y3];
}else{
return [x1, y1, x2, y2, x3, y3, x4, y4];
}
}
optional B end */
retPoints = []; // array of coordinates
i = 0;
quad = false; // presume cubic bezier
v1 = {};
v2 = {};
v4 = {};
v1.x = x1;
v1.y = y1;
v2.x = x2;
v2.y = y2;
if(x4 === undefined || x4 === null){
quad = true; // this is a quadratic bezier
v4.x = x3;
v4.y = y3;
}else{
v3 = {};
v3.x = x3;
v3.y = y3;
v4.x = x4;
v4.y = y4;
}
c = position;
retPoints[i++] = v1.x; // start point
retPoints[i++] = v1.y;
if(quad){ // split quadratic bezier
retPoints[i++] = (v1.x += (v2.x - v1.x) * c); // new control point for first curve
retPoints[i++] = (v1.y += (v2.y - v1.y) * c);
v2.x += (v4.x - v2.x) * c;
v2.y += (v4.y - v2.y) * c;
retPoints[i++] = v1.x + (v2.x - v1.x) * c; // new end and start of first and second curves
retPoints[i++] = v1.y + (v2.y - v1.y) * c;
retPoints[i++] = v2.x; // new control point for second curve
retPoints[i++] = v2.y;
retPoints[i++] = v4.x; // new endpoint of second curve
retPoints[i++] = v4.y;
//=======================================================
// return array with 2 curves
return retPoints;
}
retPoints[i++] = (v1.x += (v2.x - v1.x) * c); // first curve first control point
retPoints[i++] = (v1.y += (v2.y - v1.y) * c);
v2.x += (v3.x - v2.x) * c;
v2.y += (v3.y - v2.y) * c;
v3.x += (v4.x - v3.x) * c;
v3.y += (v4.y - v3.y) * c;
retPoints[i++] = (v1.x += (v2.x - v1.x) * c); // first curve second control point
retPoints[i++] = (v1.y += (v2.y - v1.y) * c);
v2.x += (v3.x - v2.x) * c;
v2.y += (v3.y - v2.y) * c;
retPoints[i++] = v1.x + (v2.x - v1.x) * c; // end and start point of first second curves
retPoints[i++] = v1.y + (v2.y - v1.y) * c;
retPoints[i++] = v2.x; // second curve first control point
retPoints[i++] = v2.y;
retPoints[i++] = v3.x; // second curve second control point
retPoints[i++] = v3.y;
retPoints[i++] = v4.x; // endpoint of second curve
retPoints[i++] = v4.y;
//=======================================================
// return array with 2 curves
return retPoints;
}
Trim bezier curve.
Dit voorbeeld laat zien hoe u een bezier kunt bijsnijden.
De functie trimBezier snijdt de uiteinden van de curve bij en retourneert de curve van fromPos
naar toPos
. fromPos
en toPos
liggen in het bereik van 0 tot en met 1, het kan kwadratische en kubieke curven bijsnijden. Het curve-type wordt bepaald door het laatste x-argument x4
. Als het niet undefined
of null
is, neemt het aan dat de curve kubisch is, anders is de curve een kwadratisch
De bijgesneden curve wordt geretourneerd als een reeks punten. 6 punten voor kwadratische krommen en 8 voor kubieke krommen.
Voorbeeld gebruik
Een kwadratische curve bijsnijden.
var p1 = {x : 10 , y : 100};
var p2 = {x : 100, y : 200};
var p3 = {x : 200, y : 0};
var newCurve = splitCurveAt(0.25, 0.75, p1.x, p1.y, p2.x, p2.y, p3.x, p3.y)
var i = 0;
var p = newCurve
// Draw the trimmed curve
// Assumes ctx is canvas 2d context
ctx.lineWidth = 1;
ctx.strokeStyle = "black";
ctx.beginPath();
ctx.moveTo(p[i++],p[i++]);
ctx.quadraticCurveTo(p[i++], p[i++], p[i++], p[i++]);
ctx.stroke();
Een kubieke curve bijsnijden.
var p1 = {x : 10 , y : 100};
var p2 = {x : 100, y : 200};
var p3 = {x : 200, y : 0};
var p4 = {x : 300, y : 100};
var newCurve = splitCurveAt(0.25, 0.75, p1.x, p1.y, p2.x, p2.y, p3.x, p3.y, p4.x, p4.y)
var i = 0;
var p = newCurve
// Draw the trimmed curve
// Assumes ctx is canvas 2d context
ctx.lineWidth = 1;
ctx.strokeStyle = "black";
ctx.beginPath();
ctx.moveTo(p[i++],p[i++]);
ctx.bezierCurveTo(p[i++], p[i++], p[i++], p[i++], p[i++], p[i++]);
ctx.stroke();
Voorbeeld functie
trimBezier = functie (vanPos, toPos, x1, y1, x2, y2, x3, y3, [x4, y4])
Opmerking: argumenten binnen [x4, y4] zijn optioneel.
Opmerking: deze functie vereist de functie in het voorbeeld Splitsen Bezier-curven bij in deze sectie
var trimBezier = function(fromPos, toPos, x1, y1, x2, y2, x3, y3, x4, y4){
var quad, i, s, retBez;
quad = false;
if(x4 === undefined || x4 === null){
quad = true; // this is a quadratic bezier
}
if(fromPos > toPos){ // swap is from is after to
i = fromPos;
fromPos = toPos
toPos = i;
}
// clamp to on the curve
toPos = toPos <= 0 ? 0 : toPos >= 1 ? 1 : toPos;
fromPos = fromPos <= 0 ? 0 : fromPos >= 1 ? 1 : fromPos;
if(toPos === fromPos){
s = splitBezierAt(toPos, x1, y1, x2, y2, x3, y3, x4, y4);
i = quad ? 4 : 6;
retBez = [s[i], s[i+1], s[i], s[i+1], s[i], s[i+1]];
if(!quad){
retBez.push(s[i], s[i+1]);
}
return retBez;
}
if(toPos === 1 && fromPos === 0){ // no trimming required
retBez = [x1, y1, x2, y2, x3, y3]; // return original bezier
if(!quad){
retBez.push(x4, y4);
}
return retBez;
}
if(fromPos === 0){
if(toPos < 1){
s = splitBezierAt(toPos, x1, y1, x2, y2, x3, y3, x4, y4);
i = 0;
retBez = [s[i++], s[i++], s[i++], s[i++], s[i++], s[i++]];
if(!quad){
retBez.push(s[i++], s[i++]);
}
}
return retBez;
}
if(toPos === 1){
if(fromPos < 1){
s = splitBezierAt(toPos, x1, y1, x2, y2, x3, y3, x4, y4);
i = quad ? 4 : 6;
retBez = [s[i++], s[i++], s[i++], s[i++], s[i++], s[i++]];
if(!quad){
retBez.push(s[i++], s[i++]);
}
}
return retBez;
}
s = splitBezierAt(fromPos, x1, y1, x2, y2, x3, y3, x4, y4);
if(quad){
i = 4;
toPos = (toPos - fromPos) / (1 - fromPos);
s = splitBezierAt(toPos, s[i++], s[i++], s[i++], s[i++], s[i++], s[i++]);
i = 0;
retBez = [s[i++], s[i++], s[i++], s[i++], s[i++], s[i++]];
return retBez;
}
i = 6;
toPos = (toPos - fromPos) / (1 - fromPos);
s = splitBezierAt(toPos, s[i++], s[i++], s[i++], s[i++], s[i++], s[i++], s[i++], s[i++]);
i = 0;
retBez = [s[i++], s[i++], s[i++], s[i++], s[i++], s[i++], s[i++], s[i++]];
return retBez;
}
Lengte van een Cubic Bezier Curve (een goede benadering)
Gegeven de 4 punten van een kubieke Bezier-curve retourneert de volgende functie de lengte.
Methode: De lengte van een kubieke Bezier-curve heeft geen directe wiskundige berekening. Deze "brute force" -methode vindt een steekproef van punten langs de curve en berekent de totale afstand die door die punten wordt overspannen.
Nauwkeurigheid: de geschatte lengte is 99 +% nauwkeurig met de standaard bemonsteringsgrootte van 40.
// Return: Close approximation of the length of a Cubic Bezier curve
//
// Ax,Ay,Bx,By,Cx,Cy,Dx,Dy: the 4 control points of the curve
// sampleCount [optional, default=40]: how many intervals to calculate
// Requires: cubicQxy (included below)
//
function cubicBezierLength(Ax,Ay,Bx,By,Cx,Cy,Dx,Dy,sampleCount){
var ptCount=sampleCount||40;
var totDist=0;
var lastX=Ax;
var lastY=Ay;
var dx,dy;
for(var i=1;i<ptCount;i++){
var pt=cubicQxy(i/ptCount,Ax,Ay,Bx,By,Cx,Cy,Dx,Dy);
dx=pt.x-lastX;
dy=pt.y-lastY;
totDist+=Math.sqrt(dx*dx+dy*dy);
lastX=pt.x;
lastY=pt.y;
}
dx=Dx-lastX;
dy=Dy-lastY;
totDist+=Math.sqrt(dx*dx+dy*dy);
return(parseInt(totDist));
}
// Return: an [x,y] point along a cubic Bezier curve at interval T
//
// Attribution: Stackoverflow's @Blindman67
// Cite: http://stackoverflow.com/questions/36637211/drawing-a-curved-line-in-css-or-canvas-and-moving-circle-along-it/36827074#36827074
// As modified from the above citation
//
// t: an interval along the curve (0<=t<=1)
// ax,ay,bx,by,cx,cy,dx,dy: control points defining the curve
//
function cubicQxy(t,ax,ay,bx,by,cx,cy,dx,dy) {
ax += (bx - ax) * t;
bx += (cx - bx) * t;
cx += (dx - cx) * t;
ax += (bx - ax) * t;
bx += (cx - bx) * t;
ay += (by - ay) * t;
by += (cy - by) * t;
cy += (dy - cy) * t;
ay += (by - ay) * t;
by += (cy - by) * t;
return({
x:ax +(bx - ax) * t,
y:ay +(by - ay) * t
});
}
Zoek punt op curve
In dit voorbeeld wordt een punt op een bezier- of kubische curve gevonden op een position
waarbij de position
eenheidsafstand is op de curve 0 <= position
<= 1. De positie wordt op het bereik geklemd, dus als waarden <0 of> 1 worden doorgegeven, worden ze stel respectievelijk 0,1 in.
Geef de functie 6 coördinaten door voor kwadratische bezier of 8 voor kubieke.
Het laatste optionele argument is de geretourneerde vector (punt). Indien niet gegeven zal het worden aangemaakt.
Voorbeeld gebruik
var p1 = {x : 10 , y : 100};
var p2 = {x : 100, y : 200};
var p3 = {x : 200, y : 0};
var p4 = {x : 300, y : 100};
var point = {x : null, y : null};
// for cubic beziers
point = getPointOnCurve(0.5, p1.x, p1.y, p2.x, p2.y, p3.x, p3.y, p4.x, p4.y, point);
// or No need to set point as it is a referance and will be set
getPointOnCurve(0.5, p1.x, p1.y, p2.x, p2.y, p3.x, p3.y, p4.x, p4.y, point);
// or to create a new point
var point1 = getPointOnCurve(0.5, p1.x, p1.y, p2.x, p2.y, p3.x, p3.y, p4.x, p4.y);
// for quadratic beziers
point = getPointOnCurve(0.5, p1.x, p1.y, p2.x, p2.y, p3.x, p3.y, null, null, point);
// or No need to set point as it is a referance and will be set
getPointOnCurve(0.5, p1.x, p1.y, p2.x, p2.y, p3.x, p3.y, null, null, point);
// or to create a new point
var point1 = getPointOnCurve(0.5, p1.x, p1.y, p2.x, p2.y, p3.x, p3.y);
De functie
getPointOnCurve = functie (positie, x1, y1, x2, y2, x3, y3, [x4, y4], [vec])
Opmerking: argumenten binnen [x4, y4] zijn optioneel.
Opmerking:
x4
,y4
indiennull
ofundefined
betekent dat de curve een kwadratische bezier is.vec
is optioneel en houdt het geretourneerde punt vast indien geleverd. Zo niet, dan wordt deze gemaakt.
var getPointOnCurve = function(position, x1, y1, x2, y2, x3, y3, x4, y4, vec){
var vec, quad;
quad = false;
if(vec === undefined){
vec = {};
}
if(x4 === undefined || x4 === null){
quad = true;
x4 = x3;
y4 = y3;
}
if(position <= 0){
vec.x = x1;
vec.y = y1;
return vec;
}
if(position >= 1){
vec.x = x4;
vec.y = y4;
return vec;
}
c = position;
if(quad){
x1 += (x2 - x1) * c;
y1 += (y2 - y1) * c;
x2 += (x3 - x2) * c;
y2 += (y3 - y2) * c;
vec.x = x1 + (x2 - x1) * c;
vec.y = y1 + (y2 - y1) * c;
return vec;
}
x1 += (x2 - x1) * c;
y1 += (y2 - y1) * c;
x2 += (x3 - x2) * c;
y2 += (y3 - y2) * c;
x3 += (x4 - x3) * c;
y3 += (y4 - y3) * c;
x1 += (x2 - x1) * c;
y1 += (y2 - y1) * c;
x2 += (x3 - x2) * c;
y2 += (y3 - y2) * c;
vec.x = x1 + (x2 - x1) * c;
vec.y = y1 + (y2 - y1) * c;
return vec;
}
De omvang van de kwadratische curve bepalen
Wanneer u de grensrechthoek van een kwadratische beziercurve moet vinden, kunt u de volgende performante methode gebruiken.
// This method was discovered by Blindman67 and solves by first normalising the control point thereby reducing the algorithm complexity
// x1,y1, x2,y2, x3,y3 Start, Control, and End coords of bezier
// [extent] is optional and if provided the extent will be added to it allowing you to use the function
// to get the extent of many beziers.
// returns extent object (if not supplied a new extent is created)
// Extent object properties
// top, left,right,bottom,width,height
function getQuadraticCurevExtent(x1, y1, x2, y2, x3, y3, extent) {
var brx, bx, x, bry, by, y, px, py;
// solve quadratic for bounds by BM67 normalizing equation
brx = x3 - x1; // get x range
bx = x2 - x1; // get x control point offset
x = bx / brx; // normalise control point which is used to check if maxima is in range
// do the same for the y points
bry = y3 - y1;
by = y2 - y1;
y = by / bry;
px = x1; // set defaults in case maximas outside range
py = y1;
// find top/left, top/right, bottom/left, or bottom/right
if (x < 0 || x > 1) { // check if x maxima is on the curve
px = bx * bx / (2 * bx - brx) + x1; // get the x maxima
}
if (y < 0 || y > 1) { // same as x
py = by * by / (2 * by - bry) + y1;
}
// create extent object and add extent
if (extent === undefined) {
extent = {};
extent.left = Math.min(x1, x3, px);
extent.top = Math.min(y1, y3, py);
extent.right = Math.max(x1, x3, px);
extent.bottom = Math.max(y1, y3, py);
} else { // use spplied extent and extend it to fit this curve
extent.left = Math.min(x1, x3, px, extent.left);
extent.top = Math.min(y1, y3, py, extent.top);
extent.right = Math.max(x1, x3, px, extent.right);
extent.bottom = Math.max(y1, y3, py, extent.bottom);
}
extent.width = extent.right - extent.left;
extent.height = extent.bottom - extent.top;
return extent;
}
Voor een meer gedetailleerde kijk op het oplossen van omvang, zie antwoord Om de omvang van een kwadratische bezier te krijgen met uitvoerbare demo's.